AI-TOD:微小目标检测在航拍图像中的官方代码安装配置完全指南
项目基础介绍及主要编程语言
AI-TOD(Tiny Object Detection in Aerial Images)是一个专门针对航拍图像中微小对象检测的开源项目。该数据集包含了700,621个跨越八类别的对象实例,在28,036张航拍图片中,平均对象大小约为12.8像素,远小于其他现有航拍图像中的对象大小。此项目旨在支持和促进对超小型目标的检测研究。主要使用的编程语言是Python。
关键技术和框架
AI-TOD利用了深度学习方法处理微小目标的挑战,可能涉及到如Faster R-CNN、YOLO等物体检测算法的变体,并且依赖于MMCV(一个基于PyTorch的计算机视觉库)进行模型实现。此外,项目中还自定义了一套工具包wwtool,用于特定的数据处理任务。
安装和配置详细步骤
准备工作:
- 环境要求:确保您的系统已安装Python 3.7及以上版本。
- 安装Git:如果你还没有Git,需先安装Git来克隆仓库。
步骤一:克隆项目
打开终端或命令提示符,运行以下命令以克隆AI-TOD项目到本地:
git clone https://github.com/jwwangchn/AI-TOD.git
cd AI-TOD
步骤二:下载数据集
- 下载xView训练集
- 下载[AI-TOD部分数据](注:同上,通过提供的OneDrive或其他方式)
步骤三:组织文件结构
按照以下结构整理下载的文件:
AI-TOD/
│
├── aitod
│ ├── annotations // 放置AI-TOD_wo_xview的json注释
│ ├── images // 解压并按训练、验证等分类放置图片
│ ├── ...
│
├── aitod_xview // 放置六份txt文件
│
└── xview // 放置xView训练集的图片和注释文件
步骤四:安装必要库
首先安装wwtool:
git clone https://github.com/jwwangchn/wwtool.git
cd wwtool
python setup.py develop
然后回到AI-TOD目录安装其他依赖:
cd ../AI-TOD
pip install -r requirements.txt
步骤五:生成AI-TOD数据集
运行脚本合成完整的数据集,这一步可能需要较长时间:
python generate_aitod_imgs.py
完成后,AI-TOD的完整图像集将位于aitod
文件夹内。
步骤六:运行与评估
- 虽未详细列出,但通常接下来您需要根据项目的说明进行模型的训练或测试。这涉及配置模型参数、启动训练脚本等,具体细节需参照项目文档。
至此,您已经成功配置好AI-TOD项目的基本环境,可以进一步探索和实验微小目标的检测功能。记得遵循许可证协议进行使用,AI-TOD数据集适用于学术研究和个人探究,但在商业应用上有一定的限制。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考