AnythingLLM 项目下载及安装教程

AnythingLLM 项目下载及安装教程

anything-llm 为开源和闭源的大型语言模型(LLMs)、嵌入器和向量数据库提供开源的ChatGPT体验。在一个应用中提供无限的文档、消息和并发用户,以及权限管理。 anything-llm 项目地址: https://gitcode.com/gh_mirrors/an/anything-llm

1、项目介绍

AnythingLLM 是一个全栈应用程序,允许您将任何文档、资源或内容转换为 LLM(大型语言模型)在聊天时可以使用的上下文。该应用程序支持选择使用商业现成的 LLM 或流行的开源 LLM 和向量数据库解决方案,构建一个私有的 ChatGPT,无需妥协,可以在本地运行,也可以远程托管,并支持多用户管理和权限。

2、项目下载位置

您可以通过以下链接下载 AnythingLLM 项目:

GitHub - Mintplex-Labs/anything-llm

3、项目安装环境配置

在开始安装之前,请确保您的系统满足以下环境要求:

  • 操作系统:Windows、macOS 或 Linux
  • Node.js:建议使用 Node.js 14.x 或更高版本
  • Docker(可选):如果您计划使用 Docker 进行安装,请确保已安装 Docker

环境配置示例

以下是 macOS 系统上安装 Node.js 和 Docker 的示例:

安装 Node.js
  1. 打开终端并运行以下命令:

    brew install node
    
  2. 验证安装是否成功:

    node -v
    npm -v
    
安装 Docker
  1. 下载并安装 Docker Desktop: Docker Desktop 下载

  2. 启动 Docker Desktop 并验证安装:

    docker --version
    docker-compose --version
    

环境配置示例

4、项目安装方式

使用 Docker 安装

  1. 克隆项目仓库:

    git clone https://github.com/Mintplex-Labs/anything-llm.git
    
  2. 进入项目目录:

    cd anything-llm
    
  3. 构建并运行 Docker 容器:

    docker-compose up --build
    

本地安装

  1. 克隆项目仓库:

    git clone https://github.com/Mintplex-Labs/anything-llm.git
    
  2. 进入项目目录:

    cd anything-llm
    
  3. 安装依赖:

    yarn install
    
  4. 启动服务器和前端:

    yarn dev:server
    yarn dev:frontend
    

5、项目处理脚本

在项目根目录下,您可以使用以下脚本来处理文档和启动服务:

  • 启动服务器

    yarn dev:server
    
  • 启动前端

    yarn dev:frontend
    
  • 运行文档收集器

    yarn dev:collector
    

通过这些脚本,您可以轻松地启动和管理 AnythingLLM 项目。


希望这篇教程能帮助您顺利下载和安装 AnythingLLM 项目!如果有任何问题,请随时联系我们。

anything-llm 为开源和闭源的大型语言模型(LLMs)、嵌入器和向量数据库提供开源的ChatGPT体验。在一个应用中提供无限的文档、消息和并发用户,以及权限管理。 anything-llm 项目地址: https://gitcode.com/gh_mirrors/an/anything-llm

### AnythingLLM 离线部署教程 #### 准备工作 为了成功完成AnythingLLM的离线部署,需先确认目标机器的操作环境已满足最低需求。这通常意味着安装特定版本的Python以及必要的依赖库[^1]。 对于任何大型语言模型而言,在准备阶段还需要获取预训练权重文件与配置文档;这些资源可能无法通过互联网实时下载时,则应提前保存于本地存储设备之中以便后续调用[^2]。 #### 部署流程 在确保所有前置条件都已被妥善处理之后,可以按照如下方式继续: - **创建虚拟环境**:建议为项目单独建立一个新的Python虚拟环境来隔离不同应用之间的潜在冲突。 ```bash conda create -n anythingllm python=3.8 conda activate anythingllm ``` - **安装依赖项**:依据官方给出的要求列表逐一安装所需的第三方包。如果网络连接不可靠或不存在的情况下,应该事先打包好wheel格式的软件包并将其放置在同一目录下供pip命令读取。 ```bash pip install --no-index --find-links=./packages -r requirements.txt ``` - **加载模型参数**:当所有的准备工作完成后,就可以着手导入之前已经准备好放在本地磁盘上的模型数据了。此过程涉及到解压压缩包并将其中的内容复制到指定路径内。 ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "/path/to/local/model" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained(model_path) ``` - **启动服务接口**:最后一步就是设置API端点使得外部程序能够向该实例发送请求从而获得预测结果。RESTful风格的服务可以通过Flask框架轻松实现这一点。 ```python from flask import Flask, request, jsonify app = Flask(__name__) @app.route('/predict', methods=['POST']) def predict(): input_text = request.json['text'] inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs) result = tokenizer.decode(outputs[0], skip_special_tokens=True) return jsonify({"response": result}) if __name__ == "__main__": app.run(host='0.0.0.0') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鲁椒睿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值