基于LSTM-BP组合模型的短时交通流预测
简介
本资源文件提供了一种创新的短时交通流预测方法,该方法结合了长短时记忆神经网络(LSTM)和BP神经网络的优点,形成了一种高效的LSTM-BP组合模型。此模型旨在应对当前日益严重的交通拥堵问题,为智能交通管控、交通流诱导以及交通出行提供准确、实时的交通流预测数据。
详细描述
为解决交通拥堵问题,本模型通过挖掘已知交通流数据的特征因子,构建时间序列预测模型框架。利用Matlab软件,从数据处理到模型仿真的一系列过程得以顺利完成,实现了基于LSTM-BP组合模型的短时交通流精确预测。
在模型评估阶段,我们将其与LSTM、BP和WNN三种预测网络模型进行了对比。实验结果表明,LSTM-BP预测的时间序列具有较高的精度和稳定性。因此,该模型可广泛应用于交通分布预测、交通方式划分以及实时交通流分配等领域,为相关决策提供依据和参考。
注意事项
- 请确保在合适的环境下使用Matlab软件进行模型仿真。
- 在使用和参考本模型时,请遵循相关法律法规及学术规范。
- 如有任何疑问,请根据实际情况自行解决。