Acoular 项目推荐

Acoular 项目推荐

acoular Library for acoustic beamforming acoular 项目地址: https://gitcode.com/gh_mirrors/ac/acoular

1. 项目基础介绍和主要编程语言

Acoular 是一个用于声学测试和声源映射的 Python 模块。该项目旨在通过多通道麦克风阵列记录的数据进行声学信号处理和分析,以生成声源分布图。Acoular 的核心功能包括声学成像、声源定位和频谱分析。该项目采用 Python 编程语言开发,并遵循 BSD-3-Clause 许可证。

2. 项目核心功能

Acoular 提供了多种声学信号处理算法,包括:

  • 频率域波束形成算法:如延迟与求和、Capon(自适应)、MUSIC、功能波束形成和特征值波束形成。
  • 频率域反卷积算法:如 DAMAS、DAMAS+、Clean、CleanSC 和正交反卷积。
  • 频率域逆方法:如 CMF(协方差矩阵拟合)、广义逆波束形成和 SODIX。
  • 时域方法:如延迟与求和波束形成、CleanT 反卷积。
  • 适用于移动声源的时域方法:支持线性、圆形和任意三维曲线路径。
  • 虚拟阵列旋转:适用于旋转声源的频率域方法。
  • 多种映射网格:支持 1D、2D 和 3D 映射网格。
  • 背景流处理:支持任意静止背景流的考虑。
  • 高效的交叉谱矩阵计算:灵活的模块化时域处理。
  • 时域模拟:支持固定和任意移动声源在任意流中的模拟。

3. 项目最近更新的功能

截至最新版本,Acoular 的更新内容包括:

  • 频率域波束形成算法的优化:提升了算法的计算效率和准确性。
  • 新增时域方法:扩展了对移动声源的处理能力,支持更多类型的声源路径。
  • 改进的映射网格功能:增加了对 3D 映射网格的支持,提升了声源定位的精度。
  • 增强的背景流处理:改进了对复杂背景流的处理能力,提高了算法的鲁棒性。
  • 更高效的交叉谱矩阵计算:优化了计算流程,减少了计算时间。

Acoular 是一个功能强大且不断发展的声学信号处理工具,适用于各种声学测试和声源映射应用。

acoular Library for acoustic beamforming acoular 项目地址: https://gitcode.com/gh_mirrors/ac/acoular

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

邵宾恩Gift-Brave

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值