SST-2 数据集 - 情感分析标记数据集
描述
SST-2(Stanford Sentiment Treebank)是一个用于情感分析的标记数据集,由斯坦福大学的研究人员创建。该数据集的主要目的是为了帮助研究人员和开发者训练和评估情感分析模型。SST-2包含由电影评论组成的句子,每个句子都被标记为正面的(positive)或负面的(negative)情感。这些句子来自于电影评论网站Rotten Tomatoes。
数据集特点
- 二分类标记:每个句子被标记为正面或负面情感,使其成为一个二分类问题。
- 层级结构:SST-2数据集不仅包含句子级别的标记,还包含了句子结构的标记。每个句子都被映射到一棵语法树中,这棵树表示了句子的结构。这种结构化表示使得该数据集对于探索句子结构和语法在情感分析中的作用具有额外的价值。
- 数据来源:SST-2数据集的句子是从Rotten Tomatoes网站上提取的电影评论中获取的,这些评论包括观众对电影的评价和看法。
应用领域
SST-2数据集的应用领域包括但不限于:
- 情感分析模型的训练和评估
- 研究句子结构和语法在情感分析中的作用
- 自然语言处理领域的其他相关研究
使用说明
该资源文件提供了SST-2数据集的下载,您可以通过下载该文件来获取数据集并进行相关研究或模型训练。数据集的格式通常为CSV或JSON,具体格式请参考下载文件中的说明文档。
注意事项
在使用该数据集时,请确保遵守相关的数据使用协议和版权规定。数据集仅供学术研究和开发使用,不得用于商业用途。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考
264

被折叠的 条评论
为什么被折叠?



