无人送药小车:视觉与电控的完美结合
项目介绍
在2021年全国大学生电子设计竞赛中,F题“无人送药小车”无疑是一个极具挑战性的项目。该项目不仅要求参赛者具备扎实的电子设计基础,还需要对视觉识别和电控系统有深入的理解。为了帮助广大参赛者更好地应对这一挑战,我们开源了这一项目的完整代码,涵盖了视觉上位机模块、K210数字识别、YOLOV5神经网络模型训练、OpenMV红线循迹以及电控部分的实现。
项目技术分析
视觉任务
-
数字识别与滤波:项目中使用了K210进行数字识别,通过滤波和判断处理,确保识别结果的准确性。这一部分代码详细介绍了如何进行数字识别、滤噪和判断操作,适合初学者学习和参考。
-
YOLOV5神经网络模型:为了提高识别的准确性和效率,项目中还提供了YOLOV5神经网络模型的训练方法。通过训练自己的模型,可以更好地适应实际应用场景中的各种复杂情况。
红线循迹
- OpenMV红线循迹:红线循迹是无人送药小车的重要功能之一。项目中使用了OpenMV进行红线循迹,代码中包含详细注释,便于理解和修改。通过这一部分的实现,小车可以准确地沿着预定的路径行驶。
电控部分
- STM32F103ZET6最小系统板:电控主程序基于STM32F103ZET6最小系统板,详细的操作步骤和硬件工具介绍,确保电控部分的稳定性和可靠性。
项目及技术应用场景
无人送药小车的应用场景非常广泛,尤其是在医疗、物流等领域。例如,在医院中,无人送药小车可以自动将药品送到指定的病房,减少医护人员的工作负担;在物流仓库中,无人送药小车可以自动搬运货物,提高工作效率。此外,该项目还可以应用于教育领域,作为电子设计竞赛的参考项目,帮助学生更好地理解和掌握相关技术。
项目特点
-
开源代码:项目代码完全开源,适合初学者学习和参考。代码中包含详细注释,便于理解和修改。
-
技术全面:项目涵盖了视觉识别、神经网络模型训练、红线循迹和电控系统等多个技术领域,技术全面且实用。
-
应用广泛:无人送药小车的应用场景非常广泛,尤其是在医疗、物流等领域,具有很高的实用价值。
-
优化算法:经过算法优化,几乎不存在掉帧问题,确保系统的稳定性和可靠性。
-
社区支持:项目开源后,欢迎大家下载和使用,并提供相关博客文章的详细讲解和更多内容,形成良好的社区支持。
结语
无人送药小车项目不仅是一个极具挑战性的电子设计竞赛题目,更是一个集视觉识别、神经网络训练、红线循迹和电控系统于一体的综合性项目。通过开源这一项目的完整代码,我们希望能够帮助更多的学生和开发者更好地理解和掌握相关技术,推动无人送药小车技术的发展和应用。欢迎大家下载和使用,共同推动这一领域的进步!