Yolov5-Flask-VUE:基于Flask和VUE的YOLOv5目标检测模型部署
项目简介
本项目提供了一个基于Flask开发后端、VUE开发前端的框架,用于在WEB端部署YOLOv5目标检测模型。通过本项目,您可以轻松地将YOLOv5模型集成到您的WEB应用中,实现目标检测功能。
项目特点
- 前后端分离架构:采用Flask作为后端框架,VUE作为前端框架,实现了前后端分离,便于开发和维护。
- YOLOv5模型支持:支持YOLOv5模型的部署和预测,可以轻松集成到您的WEB应用中。
- 自定义模型训练:您可以根据自己的需求训练YOLOv5模型,并将其部署到本项目中。
项目结构
- 后端:使用Flask框架,提供YOLOv5模型的预测接口。
- 前端:使用VUE框架,提供用户界面,用户可以通过界面上传图片或视频,进行目标检测。
使用说明
1. 环境配置
- 安装Python环境,建议使用Python 3.7及以上版本。
- 安装Flask和VUE的相关依赖。
2. 模型训练
- 如果您需要训练自己的YOLOv5模型,可以参考相关教程进行训练。
- 本项目默认使用官方训练好的
yolov5m.pt模型进行演示。
3. 模型预测
- 启动Flask后端服务,提供YOLOv5模型的预测接口。
- 在前端界面中上传图片或视频,调用后端接口进行目标检测。
4. 最终效果
- 您可以在前端界面中查看目标检测的结果,包括检测到的目标类别、位置等信息。
代码示例
以下是YOLOv5模型预测接口的部分代码示例:
import torch
import numpy as np
from models.experimental import attempt_load
from utils.general import non_max_suppression, scale_coords, letterbox
from utils.torch_utils import select_device
import cv2
from random import randint
class Detector(object):
def __init__(self):
# 初始化模型和设备
self.device = select_device('')
self.model = attempt_load('yolov5m.pt', map_location=self.device)
self.model.eval()
def detect(self, img):
# 图像预处理
img = letterbox(img, new_shape=640)[0]
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB
img = np.ascontiguousarray(img)
img = torch.from_numpy(img).to(self.device)
img = img.float() / 255.0 # 归一化
if img.ndimension() == 3:
img = img.unsqueeze(0)
# 模型预测
with torch.no_grad():
pred = self.model(img, augment=False)[0]
pred = non_max_suppression(pred, conf_thres=0.4, iou_thres=0.5)
# 处理预测结果
for det in pred:
if det is not None and len(det):
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], img.shape).round()
for *xyxy, conf, cls in det:
label = f'{self.model.names[int(cls)]} {conf:.2f}'
plot_one_box(xyxy, img, label=label, color=colors[int(cls)], line_thickness=3)
return img
贡献
欢迎大家为本项目贡献代码或提出改进建议。如果您有任何问题或建议,请在GitHub上提交Issue。
许可证
本项目采用MIT许可证,详情请参阅LICENSE文件。
3627

被折叠的 条评论
为什么被折叠?



