Yolov5-Flask-VUE:基于Flask和VUE的YOLOv5目标检测模型部署

Yolov5-Flask-VUE:基于Flask和VUE的YOLOv5目标检测模型部署

【下载地址】Yolov5-Flask-VUE基于Flask和VUE的YOLOv5目标检测模型部署 本项目提供了一个基于Flask开发后端、VUE开发前端的框架,用于在WEB端部署YOLOv5目标检测模型。通过本项目,您可以轻松地将YOLOv5模型集成到您的WEB应用中,实现目标检测功能 【下载地址】Yolov5-Flask-VUE基于Flask和VUE的YOLOv5目标检测模型部署 项目地址: https://gitcode.com/open-source-toolkit/70cae

项目简介

本项目提供了一个基于Flask开发后端、VUE开发前端的框架,用于在WEB端部署YOLOv5目标检测模型。通过本项目,您可以轻松地将YOLOv5模型集成到您的WEB应用中,实现目标检测功能。

项目特点

  1. 前后端分离架构:采用Flask作为后端框架,VUE作为前端框架,实现了前后端分离,便于开发和维护。
  2. YOLOv5模型支持:支持YOLOv5模型的部署和预测,可以轻松集成到您的WEB应用中。
  3. 自定义模型训练:您可以根据自己的需求训练YOLOv5模型,并将其部署到本项目中。

项目结构

  • 后端:使用Flask框架,提供YOLOv5模型的预测接口。
  • 前端:使用VUE框架,提供用户界面,用户可以通过界面上传图片或视频,进行目标检测。

使用说明

1. 环境配置

  • 安装Python环境,建议使用Python 3.7及以上版本。
  • 安装Flask和VUE的相关依赖。

2. 模型训练

  • 如果您需要训练自己的YOLOv5模型,可以参考相关教程进行训练。
  • 本项目默认使用官方训练好的yolov5m.pt模型进行演示。

3. 模型预测

  • 启动Flask后端服务,提供YOLOv5模型的预测接口。
  • 在前端界面中上传图片或视频,调用后端接口进行目标检测。

4. 最终效果

  • 您可以在前端界面中查看目标检测的结果,包括检测到的目标类别、位置等信息。

代码示例

以下是YOLOv5模型预测接口的部分代码示例:

import torch
import numpy as np
from models.experimental import attempt_load
from utils.general import non_max_suppression, scale_coords, letterbox
from utils.torch_utils import select_device
import cv2
from random import randint

class Detector(object):
    def __init__(self):
        # 初始化模型和设备
        self.device = select_device('')
        self.model = attempt_load('yolov5m.pt', map_location=self.device)
        self.model.eval()

    def detect(self, img):
        # 图像预处理
        img = letterbox(img, new_shape=640)[0]
        img = img[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB
        img = np.ascontiguousarray(img)
        img = torch.from_numpy(img).to(self.device)
        img = img.float() / 255.0  # 归一化
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # 模型预测
        with torch.no_grad():
            pred = self.model(img, augment=False)[0]
            pred = non_max_suppression(pred, conf_thres=0.4, iou_thres=0.5)

        # 处理预测结果
        for det in pred:
            if det is not None and len(det):
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4], img.shape).round()
                for *xyxy, conf, cls in det:
                    label = f'{self.model.names[int(cls)]} {conf:.2f}'
                    plot_one_box(xyxy, img, label=label, color=colors[int(cls)], line_thickness=3)

        return img

贡献

欢迎大家为本项目贡献代码或提出改进建议。如果您有任何问题或建议,请在GitHub上提交Issue。

许可证

本项目采用MIT许可证,详情请参阅LICENSE文件。

【下载地址】Yolov5-Flask-VUE基于Flask和VUE的YOLOv5目标检测模型部署 本项目提供了一个基于Flask开发后端、VUE开发前端的框架,用于在WEB端部署YOLOv5目标检测模型。通过本项目,您可以轻松地将YOLOv5模型集成到您的WEB应用中,实现目标检测功能 【下载地址】Yolov5-Flask-VUE基于Flask和VUE的YOLOv5目标检测模型部署 项目地址: https://gitcode.com/open-source-toolkit/70cae

【资源说明】 基于Vue+Flask+python实现的短视频相似度检测系统源码(使用多种哈希算法+孪生神经网络)+项目说明.zip 文本相似度检测算法使用Jaccrad,余弦相似度及Dice,最终结果为三者取平均值 视频相似度检测即为遍历关键帧对比,使用均值哈希,差值哈希,感知哈希,三直方图及SSIM指标,若这五个指标中有四个及以上大于阈值0.55,则调用神经网络进行进一步对比,最终分数为0.1*(前五个算法之) + 神经网络/100 前端 node.js版本v14.17.1 frontend目录下npm i && npm run serve 生产环境搭建命令为npm run build,文件在dist目录下 ### 后端 Python版本(Anaconda)3.7 backend目录下pip install -r requirements 数据库建议清空,测试用户名ivy,密码ivy 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,也适用于小白学习入门进阶。当然也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或者热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载,沟通交流,互相学习,共同进步!
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSDRetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

富阔典

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值