leetcode-java-95. Unique Binary Search Trees II

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/github_34514750/article/details/52211896
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
/*
二叉搜索树BST:
从微观上来讲,BST的每个节点都大于其左节点,且小于其右节点。
从宏观上来将,BST的每个节点都大于其左子树的每个节点,且小于其右子树的每个节点。
一棵BST的中序遍历是有序的。这个性质我们称为BST的单调性。

本题用动态规划
分治法和动态规划
相同点:都是将原问题分而治之,分解成若干个规模较小
区别:
分治法常常利用递归求解,分解后的子问题看成相互独立的
动态规划通常利用迭代自底向上求解,或者具有记忆能力对桂法自顶向下,其分解的子问题理解成相互有联系的
思路:
1. 选出根结点后应该先分别求解该根的左右子树集合,也就是根的左子树有若干种,它们组成左子树集合,根的右子树有若干种,它们组成右子树集合。
2. 然后将左右子树相互配对,每一个左子树都与所有右子树匹配,每一个右子树都与所有的左子树匹配。然后将两个子树插在根结点上。
3. 最后,把根结点放入list中。
 */
public class Solution {
    public List<TreeNode> generateTrees(int n) {
         if(n < 1) {
             return new ArrayList<TreeNode>();
         }
         return generate(1,n);
    }

    public List<TreeNode> generate(int start,int end) {
        List<TreeNode> list = new ArrayList<TreeNode>();
        // 加null至关重要
        if(start > end) {
            list.add(null);
            return list;
        }

        // 确定根节点
        for(int i = start;i <= end;i++) {
            // 确定左右子树
            List<TreeNode> left = generate(start,i-1);
            List<TreeNode> right = generate(i+1,end);
            for(TreeNode leftT:left) {
                for(TreeNode rightT:right) {
                    TreeNode root = new TreeNode(i);
                    root.left = leftT;
                    root.right = rightT;
                    list.add(root);
                }
            }
        }
        return list;
    }
}
阅读更多
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页