排序:
默认
按更新时间
按访问量

spark数据倾斜优化

一、尽量避免数据源的数据倾斜 比如数据源是kafka: 以Spark Stream通过DirectStream方式读取Kafka数据为例。由于Kafka的每一个Partition对应Spark的一个Task(Partition),所以Kafka内相关Topic的各Partition之间...

2017-12-13 16:43:17

阅读数:261

评论数:0

简单搞定spark的shuffle流程

Shuffle原理剖析与源码分析 1、在Spark中,什么情况下,会发生shuffle?reduceByKey、groupByKey、sortByKey、countByKey、join、cogroup等操作。 2、默认的Shuffle操作的原理剖析 3、优化后的Shuffle操作的原理剖...

2017-11-26 15:04:43

阅读数:5659

评论数:2

深入理解spark内核

核心组件的交互流程: 在Standalone模式下,Spark中各个组件之间交互还是比较复杂的,但是对于一个通用的分布式计算系统来说,这些都是非常重要而且比较基础的交互。首先,为了理解组件之间的主要交互流程,我们给出一些基本要点: 一个Application会启动一个Driver 一个...

2017-11-23 19:17:13

阅读数:147

评论数:0

简单搞定hdfs读写流程

1.HDFS写数据流程         1)客户端向namenode请求上传文件,namenode检查目标文件是否已存在,父目录是否存在。 2)namenode返回是否可以上传。 3)客户端请求第一个 block上传到哪几个datanode服务器上。 4)n...

2017-09-04 18:37:10

阅读数:1834

评论数:1

简单搞定FileInputFormat切片机制

1 FileInputFormat切片机制 1)job提交流程源码详解 waitForCompletion() submit(); // 1建立连接        connect();                    // 1)创建提交job的代理...

2017-08-28 11:27:04

阅读数:879

评论数:0

简单搞定yarn工作机制

Yarn概述? Yarn是一个资源调度平台,负责为运算程序提供服务器运算资源,相当于一个分布式的操作系统平台,而mapreduce等运算程序则相当于运行于操作系统之上的应用程序 Yarn的重要概念 1)yarn并不清楚用户提交的程序的运行机制 2)yarn只提供运算...

2017-08-13 18:48:04

阅读数:192

评论数:0

简单搞定NameNode和DataNode运行机制

NameNode&Secondary NameNode工作机制 文字总结: 1)第一阶段:namenode启动 (1)第一次启动namenode格式化后,创建fsimage和edits文件。如果不是第一次启动,直接加载编辑日志和镜像文件到内存。 (2...

2017-08-07 08:17:59

阅读数:217

评论数:0

简单搞定MapReduce运行原理

1)分布式的运算程序往往需要分成至少2个阶段 2)第一个阶段的maptask并发实例,完全并行运行,互不相干 3)第二个阶段的reduce task并发实例互不相干,但是他们的数据依赖于上一个阶段的所有maptask并发实例的输出 4)MapReduce编程模型只能包含一个map...

2017-07-22 20:29:38

阅读数:221

评论数:0

简单搞定Shuffle机制运行原理

2.4.1 概述 1)mapreduce中,map阶段处理的数据如何传递给reduce阶段,是mapreduce框架中最关键的一个流程,这个流程就叫shuffle; 2)shuffle: 洗牌、发牌(核心机制:数据分区、排序、缓存); 3)具体来说:就是将maptask输出的处理结果...

2017-07-16 19:05:34

阅读数:5201

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭