罗素(Bertrand Russell,1872—1970)1913年写了《数理哲学导论》一书。在这本书中他将哲学归化为纯逻辑而广受诟病,认为他对哲学的理解过于狭隘,但它却是所谓的“逻辑主义”的重要著作。书的末尾有一段很有意思的话:“在历史上数学和逻辑是两门完全不同的学科:数学与科学有关,逻辑与希腊文有关。但是二者在近代都有很大的发展:逻辑更数学化,数学更逻辑化,结果在二者之间完全不能划出一条界限; 事实上二者也确是一门学科。”并且还对此打了个比喻:“……它们的不同就象儿童与成人的不同:逻辑是数学的少年时代,数学是逻辑的成人时代。”同时又表现出一种担心,他认为:“这种见解会触犯一些逻辑学家,这些人曾经消耗他们的时间于古典著作的研究而不能从事一点点符号的推理;也会触犯一些数学家,他们已经学会了一种技术,但从不费心去研究它的意义和合理性。”不过,最后他还是相当有信心,说到:“这两种人现在幸而都愈来愈少了。许多现代的数学研究显然是在逻辑的边缘上,许多现代的逻辑研究是符号的,形式的,以致对于每一个受过训练的研究者来说,逻辑和数学的非常密切的关系极其明显。”
罗素的这句话至少“得罪”了关系逻辑的创始人德·摩根(Augustus De Morgan,1806-1871)。“……数学家和逻辑学家并不是太关心对方的专业,因为它们都是精密科学的两只眼睛,但是数学家对逻辑视而不见,逻辑学家对数学熟视无睹。双方都认为自己只用一只眼比用两只眼看得更清楚。”德·摩根的话的意思说白了就是数学和逻辑完全不同,井水不犯河水。没必要如罗素那样把这二门学科说得“完全不能划出一条界线”。
可是,真正付诸行动把逻辑和数学纠缠在一起的却是爱尔兰逻辑学家布尔(George Boole,1815—1864),他非要把数学和逻辑结合起来,因此可以说他是第一位冒犯了数学家也惹恼了逻辑学家的学者,动了双方的奶酪。大家对他群起而攻之,也就不足为奇了。布尔或许觉得这事有点儿麻烦,所以自从他出版了《思维规律的研究》一书后,就再未涉足这方面的内容了。”该书出版时并不被看好,只能算是个半成品。可它却让亚里士多德的逻辑和数学纠缠起来。但后来经过一系列的学者的努力,终于被德国逻辑学家施罗德(Enerst Schröder,1841—1902)将其命名为“布尔代数”。施罗德是布尔代数的集大成者,