平面向量

平面向量是在二维平面内既有方向(direction)又有大小(magnitude)的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量(标量)。

平面向量用小写加粗的字母abc表示,也可以用表示向量的有向线段的起点和终点字母表示。

相关概念

有向线段:具有方向的线段叫做 有向线段,以A为起点,B为终点的有向线段记作
AB
向量的模:有向线段 AB的长度叫做向量的模,记作| AB|;
零向量:长度等于0的向量叫做 零向量,记作
0。(注意粗体格式,实数“0”和向量“ 0”是有区别的,书写时要在实数“0”上加箭头,以免混淆);
相等向量:长度相等且方向相同的向量叫做相等向量;
平行向量( 共线向量):两个方向相同或相反的非零向量叫做 平行向量或共线向量,零向量与任意向量平行,即 0// a;
单位向量:模等于1个单位长度的向量叫做 单位向量,通常用 e表示,平行于坐标轴的单位向量习惯上分别用 ij表示。
相反向量:与 a长度相等,方向相反的向量,叫做 a的相反向量,-(- a)= a,零向量的相反向量仍然是零向量。
表示方法

几何表示

具有方向的线段叫做 有向线段,我们以A为起点、B为终点的有向线段记作
,则向量可以相应地记作
。但是,区别于有向线段,在一般的数学研究中,向量是可以平移的。

坐标表示

在直角坐标系内,
向量的坐标表示 向量的坐标表示
我们分别取与x轴、y轴方向相同的两个单位向量 ij作为基底。任作一个向量 a,由 平面向量基本定理可知,有且只有一对实数x、y,使得: a=x i+y j,我们把(x,y)叫做向量 a的(直角)坐标,记作: a=(x,y)。
其中x叫做 a在x轴上的坐标,y叫做 a在y轴上的坐标,上式叫做 向量的坐标表示。在平面直角坐标系内,每一个平面向量都可以用一对实数唯一表示。
根据定义,任取平面上两点A(x 1,y 1),B(x 2,y 2),则向量 AB=(x 2-x 1,y 2-y 1),即 一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标。

运算性质

向量同数量一样,也可以进行运算。向量可以参与多种运算过程,包括线性运算(加法、减法和数乘)、数量积、向量积与混合积等。
下面介绍运算性质时,将统一作如下规定:任取平面上两点A(x 1,y 1),B(x 2,y 2),C(x 3,y 3)。

加法

向量加法的三角形法则 向量加法的三角形法则
已知向量 AB、BC,再作向量 AC,则 向量AC叫做AB、BC的和,记作 AB+BC即有: AB+ BC= AC。
用坐标表示时,显然有: AB+ BC=(x 2-x 1,y 2-y 1)+(x 3-x 2,y 3-y 2)=(x 2-x 1+x 3-x 2,y 2-y 1+y 3-y 2)=(x 3-x 1,y 3-y 1)= AC。这就是说, 两个向量和与差的坐标分别等于这两个向量相应坐标的和与差
三角形法则:AB+ BC= AC,这种计算法则叫做 向量加法的三角形法则,简记为:首尾相连、连接首尾、指向终点。
四边形法则:已知两个从同一点 A出发的两个向量 ACAB,以 AC、A B为邻边作平行四边形ACDB,则以 A为起点的对角线 AD就是向量 ACAB的和,这种计算法则叫做 向量加法的平行四边形法则,简记为:共起点 对角连
对于零向量和任意向量 a,有: 0+ a= a+ 0= a
向量的加法 满足所有的加法运算定律,如:交换律、结合律

减法

AB-AC=CB,这种计算法则叫做 向量减法的三角形法则,简记为:共起点、连终点、方向指向被减向量。
-(- a)= aa+(- a)=(- a)+ a= 0a- b= a+(- b)。

数乘

实数λ与向量 a的积是一个向量,这种运算叫做向量的数乘,记作λ a。当λ>0时,λ a的方向和 a的方向相同,当λ<0时,λ a的方向和 a的方向相反,当λ = 0时,λ a= 0
用坐标表示的情况下有:λ AB=λ(x 2-x 1,y 2-y 1)=(λx 2-λx 1,λy 2-λy 1)
设λ、μ是实数,那么满足如下运算性质:
  1. (λμ) a= λ(μ a)
  2. (λ + μ) a= λ a+ μ a
  3. λ( a± b) = λ a± λ b
  4. (-λ) a=-(λ a) = λ(- a)
  5. a|=|λ|| a|

数量积

已知两个非零向量 ab,那么| a|| b|cosθ(θ是 ab的夹角)叫做 ab数量积内积,记作 a·b。零向量与任意向量的数量积为0。数量积 a·b的几何意义是: a的长度| a|与 ba的方向上的投影| b|cos θ的乘积。
两个向量的数量积等于它们对应坐标的乘积的和。即:若 a=(x 1,y 1), b=(x 2,y 2),则 a·b=x 1·x 2+y 1·y 2
数量积具有以下性质:
  1. a·a=| a| 2≥0
  2. a·b= b·a
  3. k( a·b)=(k a) b= a(k b)
  4. ( b+ c)= a·b+ a·c
  5. a·b=0<=> ab
  6. a=k b<=> a// b
  7. e 1 ·e 2=| e 1|| e 2|cosθ

向量积

向量 a与向量 b的夹角:已知两个非零向量,过O点做向量OA= a,向量OB= b
向量积示意图 向量积示意图
则∠AOB=θ 叫做向量 ab的夹角,记作< a, b>。已知两个非零向量 ab,那么 a× b叫做 ab向量积外积。向量积几何意义是以 ab为边的平行四边形面积,即 S=| a× b|
a、b不共线, a× b是一个向量,其模是| a× b|=| a|| b|sin< a, b>, a× b的方向为垂直于a和b,且 aba× b按次序构成右手系。若 ab共线,则 a× b= 0
a=(x 1,y 1,0), b=(x 2,y 2,0),则有:
向量积具有如下性质:
  1. a× a= 0
  2. ab<=> a× b= 0
  3. a× b=- b× a
  4. ab=λ( a× b)= a×(λ b)
  5. ( a+ bc= a× c+ b× c

混合积

给定空间三向量 abc,向量 ab的向量积 a× b,再和向量 c作数量积( a× bc,所得的数叫做三向量 abc的混合积,记作( a, b, c)或( abc),即( abc)=( a, b, c)=( a× bc
混合积具有下列性质:
  1. 三个不共面向量 abc的混合积的绝对值等于以 abc为棱的平行六面体的体积V,并且当 abc构成右手系时混合积是正数;当 abc构成左手系时,混合积是负数,即( abc)=εV(当 abc构成右手系时ε=1;当 abc构成左手系时ε=-1)
  2. 上条性质的推论:三向量 abc共面的充要条件是( abc)=0
  3. ( abc) = ( bca) = ( cab) = - ( bac) = - ( cba) = - ( acb)

http://baike.baidu.com/link?url=qRwzsmy9gx5z3aqCtVlOWWykMWUSWw0PUYNQaCuRPeArspwTLOSxK7QWTrDrhmp8JmTQtvVl-SzXtEqjYiuML_

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值