海马优化算法优化支持向量回归(SVR)模型项目

海马优化算法优化支持向量回归(SVR)模型项目

一、项目概述

本项目将实现海马优化算法(Seahorse Optimization Algorithm, SOA)优化支持向量回归(SVR)模型的全过程。海马优化算法是一种新型元启发式算法,模拟海马的智能行为(包括移动、捕食和繁殖),能有效解决复杂优化问题。SVR作为强大的回归模型,其性能高度依赖参数选择(C、ε、γ)。本项目将结合SOA和SVR,在Python中实现参数自动优化。


二、理论基础
1. 支持向量回归(SVR)

SVR通过在高维空间构建最优超平面实现回归,核心参数:

  • 惩罚系数C:控制误差容忍度
  • 不敏感损失ε:定义回归误差容忍带
  • 核参数γ:控制高斯核函数宽度
2. 海马优化算法(SOA)

灵感来自海马三种行为:

  • 移动行为:螺旋运动
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

神经网络15044

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值