高斯溅射项目模型评估报告
摘要
本报告详细介绍了基于高斯溅射(Gaussian Splatting)技术的3D场景重建与渲染系统的模型评估方法与结果。通过对多个标准数据集进行全面测试,我们评估了模型在渲染质量、训练效率、内存占用等方面的表现,并提供了完整的Python实现代码。实验结果表明,高斯溅射技术在保持实时渲染速度的同时,能够达到与传统NeRF方法相媲美的视觉质量,且训练速度提升10倍以上。
1. 引言
1.1 研究背景
在计算机视觉和图形学领域,3D场景表示与渲染一直是一个核心挑战。传统的多边形网格表示在处理复杂场景时存在诸多限制,而神经辐射场(NeRF)虽然提供了高质量的渲染结果,但计算开销巨大。高斯溅射作为一种新兴的3D表示方法,通过各向异性高斯分布表示场景,实现了实时渲染速度与高质量输出的平衡。
1.2 高斯溅射概述
高斯溅射的核心思想是将3D场景表示为大量高斯椭球的集合,每个椭球包含:
- 位置(均值)
- 协方差矩阵(定义形状和方向)
- 不透明度
- 球谐系数(定义视角相关的外观)
在渲染时,这些3D高斯被投影到2D图像平面&#