DCRNN模型复现报告

DCRNN模型复现报告

1. 项目概述

本报告将完整复现GitHub仓库https://github.com/liyaguang/DCRNN中的Diffusion Convolutional Recurrent Neural Network (DCRNN)模型。DCRNN是一种用于交通预测的深度学习模型,结合了图卷积网络和循环神经网络,能够有效处理交通网络中的时空依赖关系。

1.1 DCRNN模型特点

  • 扩散卷积层:将空间依赖关系建模为扩散过程
  • 门控循环单元(GRU):捕捉时间依赖性
  • 编码器-解码器结构:实现多步预测
  • 计划采样:提高长期预测能力

1.2 项目结构

dcrnn-reproduction/
├── data/                   # 数据集
├── dcrnn/
│   ├── __init__.py
│   ├── base_model.py       # 基础模型类
│   ├── dcrnn_cell.py       # DCRNN单元实现
│   ├── dcrnn_model.py      # 完整DCRNN模型
│   └── utils.py            # 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

神经网络15044

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值