DCRNN模型复现报告
1. 项目概述
本报告将完整复现GitHub仓库https://github.com/liyaguang/DCRNN中的Diffusion Convolutional Recurrent Neural Network (DCRNN)模型。DCRNN是一种用于交通预测的深度学习模型,结合了图卷积网络和循环神经网络,能够有效处理交通网络中的时空依赖关系。
1.1 DCRNN模型特点
- 扩散卷积层:将空间依赖关系建模为扩散过程
- 门控循环单元(GRU):捕捉时间依赖性
- 编码器-解码器结构:实现多步预测
- 计划采样:提高长期预测能力
1.2 项目结构
dcrnn-reproduction/
├── data/ # 数据集
├── dcrnn/
│ ├── __init__.py
│ ├── base_model.py # 基础模型类
│ ├── dcrnn_cell.py # DCRNN单元实现
│ ├── dcrnn_model.py # 完整DCRNN模型
│ └── utils.py #