控压钻井智能控制系统:基于强化学习的节流阀开度优化
一、项目背景与需求分析
在石油钻井工程中,控压钻井(Managed Pressure Drilling, MPD)技术通过精确控制井底压力(BHP)来防止井涌、井漏等事故。传统PID控制方法在复杂地质条件下适应性不足,本项目采用强化学习(RL)算法动态调节节流阀开度,实现井底压力的智能控制。
核心需求:
- 建立钻井系统动力学模型
- 设计强化学习状态空间、动作空间和奖励函数
- 实现DDPG(深度确定性策略梯度)算法
- 开发压力控制仿真环境
- 进行训练与性能评估
二、系统建模与强化学习框架
2.1 钻井系统动力学模型
井底压力动态方程:
def bhp_dynamics(current_bhp, ch