自然驾驶测试场景系统设计与构建:面向自动驾驶的挑战性场景全覆盖
摘要: 本文提出了一套系统化的自然驾驶测试场景设计与构建方案,旨在为自动驾驶系统提供全面、高效、高保真的虚拟验证环境。方案基于多层级场景分类框架,融合道路类型、交通流量、天气条件等关键要素,重点针对行人横穿、车辆突停、快速变向等高风险场景进行参数化建模与行为模式提取。通过构建可定制、可扩展的场景库,并依托先进的虚拟仿真与数字孪生技术,实现测试用例的批量自动化生成,最终达成对复杂驾驶环境的全工况、多场景覆盖,为自动驾驶算法的鲁棒性验证与安全性提升提供核心支撑。
一、引言
自动驾驶技术正经历从实验室走向大规模商业化落地的关键阶段。自然驾驶测试是验证自动驾驶系统(ADS)在真实世界复杂、多变环境下的性能、安全性与可靠性的核心环节。然而,实车路测面临成本高昂、效率低下、场景覆盖有限、极端危险场景难以复现等根本性挑战。虚拟仿真测试以其高效、安全、可复现、场景覆盖广的优势,成为自然驾驶测试不可或缺的关键支柱。其核心在于构建高质量、高覆盖度的测试场景库,特别是能充分暴露系统边界的挑战性场景。
本文聚焦于设计与构建一套系统化的自然驾驶测试场景系统,核心目标包括:</