JavaScript dom对象

Js的dom对象

*dom:document object model:文档对象模型

文档:超文本标记文档HTML,xml

对象:提供了属性,方法

模型:使用属性和方法操作超文本标记文档

可以使用js里面的dom里面提供的对象。使用这些对象的属性和方法,对标记型文档         进行操作

想要对标记型文档进行操作,首先需要对标记型文档里面的所有的内容封装成对象

需要把HTML里面的标签,属性,文本都封装成对象

需要解析标记型文档

-document对象:整个文档

-element对象:标签对象

-属性对象

-文本对象

-Node节点对象:这个对象是这些对象的父对象

如果在对象里面找不到想要的方法,这个时候到Node对象里面去找

DHTML:是很多技术的简称:

HTML :封装数据

Css:使用属性和属性值设置样式

 Dom:操作HTML文档(标记型文档)

 JavaScript:专门指的是js的语法语句(ECMAScript)

*document对象

常用方法:

*write()

  1. 向页面输出变量
  2. 向页面输出HTML代码

*getElementById()

通过id得到元素(标签)

var input1 = document.getElementById("id1"); //传递的是标签的id号,得到标签对象

document.write(input1.value);

alert(input1.value);

*getElementsByName():通过标签的name的属性值得到这个标签,返回的是一个集合或者说是数组

var arr = document.getElementsByName("tname");

document.write("<br>");

document.write("数组长度:"+arr.length);

document.write("<br>");

for(var x = 0;x<arr.length;x++){

         document.write(arr[x].value);

         document.write("<br>");

}

*getElementByTagName():通过标签的标签名来得到标签对象

案例 添加末尾节点

function ha(){//在末尾添加节点

                          //获取ul标签

                          var ul1 = document.getElementById("ul");

                          //创建标签

                          var li1 = document.createElement("li");

                          //创建文本

                          var texd(text);

                          //li添加到ul下面

                          ul1.appendChild(li1);

                  }

 

*element元素对象

要操作element对象,首先需要获取到element

使用document里面的方法获取

方法:

*getAttribute(“属性名称”)获取属性里面的值

*var input = document.getElementById(“inputid”);

*alert(input.value);

*alert(input.getAttribute(“value”));//与上面的一行一样

*alert(input.class);//无法读取class属性,在这里是一个关键字

*alert(input.getAttribute(“class”));//可以获取到

*setAttribute(“属性名”,”属性值”)设置属性的值

*removeAttribute(“属性名称”)删除属性值,但是不能删除value属性

Node对象属性

*nodeName

*nodeType

*nodeValue

使用dom解析HTML时候,需要HTML里面的标签,属性和文本封装成对象

<span id="spanid" name="dog">孙阿犬</span>

标签节点:

*nodeType:1

*nodeName:大写的标签名称,比如SPAN

*nodeValue:null

var sp = document.getElementById("spanid");

                  document.write(sp.nodeType);//1

                  document.write("<br>");

                  document.write(sp.nodeName);//SPAN

                  document.write("<br>");

                  document.write(sp.nodeValue);//null

属性节点:

*nodeType:2

*nodeName:属性名称

*nodeValue:属性的值

通过getAttributeNode(“属性名称 如id name value”);来获取属性节点

var id1 = sp.getAttributeNode("id");

                  document.write(id1.nodeType);//2

                  document.write("<br>");

                  document.write(id1.nodeName);//id

                  document.write("<br>");

                  document.write(id1.nodeValue);//spanid

文本节点:

*nodeType:3

*nodeName:#text

*nodeValue:文本内容

通过firstChild 或者lastChild 获取文本节点

var text = sp.firstChild;

                  document.write(text.nodeType);//3

                  document.write("<br>");

                  document.write(text.nodeName);//#text

                  document.write("<br>");

                  document.write(text.nodeValue);//孙阿犬

 

属性二:

父节点:parentNode

子节点:childNodes:得到所有的子节点 但是兼容性差

*firstChild:获取第一个子节点

*lastChild:获取最后一个子节点

同辈节点:nextSiBling:返回一个给定节点的下一个兄弟节点

*previousSiBling:返回一个给定节点的上一个兄弟节点

AI实战-学生生活方式模式数据集分析预测实例(含24个源代码+69.54 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:24个代码,共149.89 KB;数据大小:1个文件共69.54 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn plotly.express warnings sklearn.model_selection.StratifiedShuffleSplit sklearn.pipeline.Pipeline sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OrdinalEncoder numpy sklearn.model_selection.cross_val_score sklearn.linear_model.LinearRegression sklearn.metrics.mean_squared_error sklearn.tree.DecisionTreeRegressor sklearn.ensemble.RandomForestRegressor sklearn.model_selection.train_test_split sklearn.preprocessing.PowerTransformer imblearn.pipeline.Pipeline imblearn.over_sampling.SMOTE sklearn.ensemble.AdaBoostClassifier sklearn.metrics.accuracy_score sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score optuna scipy.stats torch torch.nn torchvision.transforms torchvision.models torch.optim cv2 glob glob.glob torch.utils.data.DataLoader torch.utils.data.Dataset random.shuffle torch.utils.data.random_split torchsummary.summary matplotlib.ticker pyspark.sql.SparkSession pyspark.sql.functions.count pyspark.sql.functions.max pyspark.sql.functions.min pyspark.sql.functions.avg pyspark.sql.functions.stddev_samp pyspark.sql.functions.skewness pyspark.sql.functions.kurtosis pyspark.sql.functions pyspark.ml.feature.Tokenizer pyspark.ml.feature.VectorAssembler sklearn.preprocessing.LabelEncoder keras.models.Sequential keras.layers.Dense keras.utils.to_categorical ptitprince statsmodels.distributions.empirical_distribution.ECDF statsmodels.stats.outliers_influence.variance_inflation_factor ppscore sklearn.feature_selection.mutual_info_classif sklearn.decomposition.PCA sklearn.model_selection.StratifiedKFold sklearn.tree.DecisionTreeClassifier sklearn.metrics.balanced_accuracy_score sklearn.metrics.confusion_matrix mlxtend.plotting.plot_confusion_matrix scipy.stats.pearsonr scipy.stats.f_oneway sklearn.feature_selection.mutual_info_regression sklearn.feature_selecti
AI实战-信用卡申请风险识别数据集分析预测实例(含9个源代码+91.57 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:9个代码,共44.98 KB;数据大小:1个文件共91.57 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn wordcloud.WordCloud sklearn.model_selection.train_test_split sklearn.preprocessing.LabelEncoder sklearn.ensemble.RandomForestClassifier sklearn.metrics.accuracy_score sklearn.metrics.classification_report sklearn.metrics.confusion_matrix plotly.express plotly.subplots.make_subplots plotly.graph_objects plotly.io sklearn.base.BaseEstimator sklearn.base.TransformerMixin sklearn.preprocessing.StandardScaler sklearn.preprocessing.OrdinalEncoder sklearn.pipeline.make_pipeline sklearn.compose.make_column_transformer imblearn.over_sampling.RandomOverSampler sklearn.svm.SVC sklearn.tree.DecisionTreeClassifier sklearn.ensemble.HistGradientBoostingClassifier sklearn.ensemble.GradientBoostingClassifier sklearn.neighbors.KNeighborsClassifier sklearn.model_selection.GridSearchCV sklearn.ensemble.VotingClassifier torch lightning torchmetrics.Accuracy torch.utils.data.Dataset torch.utils.data.DataLoader numpy warnings matplotlib wordcloud.STOPWORDS collections.Counter sklearn.ensemble.ExtraTreesClassifier sklearn.ensemble.AdaBoostClassifier sklearn.ensemble.BaggingClassifier xgboost.XGBClassifier lightgbm.LGBMClassifier catboost.CatBoostClassifier sklearn.linear_model.LogisticRegression sklearn.model_selection.RandomizedSearchCV sklearn.preprocessing.MinMaxScaler imblearn.over_sampling.SMOTE
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值