
数仓的哲与思
文章平均质量分 92
数仓建模的本质其实就是性能、复杂度、便利性,权衡与思辨的过程,每一个模型都需要从投资回报率角度去审视,这样可以帮助我们权衡模型的好与坏。以“结构化智慧”解构复杂,以“平衡之道”重塑标准,用模型凝练业务本质。
优惠券已抵扣
余额抵扣
还需支付
¥59.90
¥99.00
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
莫叫石榴姐
10多年IT经验,数仓及SQL领域教练及专家,曾作为主面试官,面试多个候选人
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
数仓应如何优化成本?
数仓成本优化需从存储、计算、人力和架构四大模块切入。存储优化采用数据分级(热/温/冷)、冗余清理和格式压缩(如Parquet)策略,可降本30%-50%。计算优化通过任务画像、结果复用(中间层)和引擎升级(Spark/Presto),提升资源利用率15%-50%。人力成本通过ETL模板化、自动化监控和自助BI降低10%-20%。长期建议迁移云原生架构实现弹性伸缩,采用精益建模减少冗余。实施路径建议分阶段推进:短期清理冗余,中期流程标准化,长期架构升级,最终实现总成本下降30%-50%的同时保障业务需求。原创 2025-07-14 13:00:00 · 734 阅读 · 0 评论 -
数仓设计中,如果修饰词变成了业务过程中的一个维度,应怎么办?| 作业帮一面
摘要:在数据仓库维度建模中,当事实表的修饰词属性(如折扣类型)演变为需要独立分析、具有丰富属性的业务实体时,应将其升级为独立维度表。这种转变的核心步骤包括:识别维度实体、提取维度属性、修改事实表关联、处理缓慢变化维度、验证查询效果和更新下游模型。升级标准取决于业务需求,需满足多属性分析、数据一致性等要求,但应避免过度维度化。该过程体现了维度建模"业务需求导向"的核心思想,通过将业务标签转化为可分析实体,最终提升模型的灵活性和分析能力。原创 2025-07-11 09:00:00 · 30 阅读 · 0 评论 -
指标治理:修饰词与维度的区别是什么?
维度与修饰词在指标治理中的关键区别:维度(Dimension)是数据的分类视角(如地区、产品类别),用于拆解分析指标,通过GROUP BY实现;修饰词(Filter)则限定指标计算范围(如"新用户订单"),通过WHERE条件过滤数据。核心差异在于维度会改变分析粒度,而修饰词仅聚焦特定场景。正确区分二者可避免指标爆炸,构建灵活可复用的指标体系。维度决定"怎么看"数据,修饰词决定"算什么"数据。原创 2025-07-02 12:30:00 · 828 阅读 · 0 评论 -
数仓实战:不同业务场景下数据合并策略及实现方案
Hive数据仓库合并策略指南 摘要:本文详细介绍了Hive数据仓库中五种典型数据合并场景的实现方案。1)全量覆盖合并:适用于小表全量更新,直接覆盖目标表;2)增量追加合并:针对只增不减的日志数据,按时间分区追加;3)增量更新合并:保留最新状态,适用于订单等需要实时更新的数据;4)拉链表合并:通过生效/失效时间记录历史版本,适合需要追溯变更的数据;5)多源数据合并:按唯一键横向关联不同系统的同主体数据。每种方案均包含表结构设计、示例数据、详细实现步骤和适用性分析,帮助开发者根据业务需求选择最佳合并策略。原创 2025-07-07 09:00:00 · 37 阅读 · 0 评论 -
数仓建模:如何提升模型的复用性?| 面试篇
【摘要】提升数仓模型复用性需从架构设计、模型规范、协作机制三方面入手。关键方法包括:分层架构(DWD/DWS层标准化)、维度建模(共享维度+细粒度事实表)、公共指标封装,配合元数据管理和跨部门评审机制。实践案例表明,该方法可减少60%重复代码,缩短开发周期70%,同时需平衡复用性与灵活性。最终实现数据口径统一、开发效率提升和业务快速迭代的目标。原创 2025-07-04 09:00:00 · 46 阅读 · 0 评论 -
数仓建模:如何提升模型的复用性?| 案例篇
电商集团通过数仓模型复用优化解决三大痛点:1.分层架构统一DWD层明细表,支持多业务线复用用户行为与订单数据;2.构建通用维度表与指标层,实现跨部门共享用户、商品维度和统一GMV计算口径;3.建立标准化命名规范与元数据管理,提升模型可读性。实施效果:开发周期缩短71%(7天→2天),代码量减少60%,数据准确率提升90%,财务核算耗时从3天降至10分钟。该案例证明,通过架构设计、规范约束和跨部门协作,可将数据资产转化为共享资源,实现"一次开发、多次复用"的增效目标。原创 2025-07-03 09:00:00 · 46 阅读 · 0 评论 -
数仓建模:如何提升模型的复用性?| 理论篇
数仓模型复用性提升的核心在于分层架构、维度建模和标准化设计。通过DWD/DWS分层实现数据逐层复用,构建通用维度表和细粒度事实表作为共享基础。采用公共指标层统一计算逻辑,避免指标口径不一致。标准化命名和元数据管理提升模型可理解性,模块化设计解耦业务逻辑。同时需建立跨部门协作机制和技术工具支持,如模型评审、血缘追踪等,最终实现"一次开发、多次复用"的目标,降低开发成本,保障数据一致性。原创 2025-07-02 09:00:00 · 36 阅读 · 0 评论 -
数仓排期困境破局:如何构建让业务方信服的排期体系?
摘要: 数仓排期争议源于业务价值与技术实现的认知鸿沟。本文提出三维破局策略:1)需求解构:用“业务目标-数据需求-模型模块”三层拆解法锚定优先级,四象限法排序需求;2)技术拆解:原子化拆解6大建模环节,量化工时并暴露隐性成本(如数据治理、性能优化);3)风险量化:三级缓冲机制(任务级×1.5系数、阶段级预留、项目级10%弹性)应对需求变更与外部依赖。核心是通过业务语言翻译技术排期(如甘特图标注里程碑价值)、迭代交付最小可用版本,建立动态信任。最终排期表需透明化依赖与缓冲逻辑,让业务方理解“时间花在哪”。原创 2025-07-01 13:00:00 · 476 阅读 · 0 评论 -
数仓分区时间设计:系统时间与业务时间如何选?| 虾皮数开
数仓建模中分区时间的设计策略摘要 在数仓建模中,分区时间设计需平衡数据接入效率和业务分析准确性,核心原则是: 分层处理:ODS层采用系统时间(数据加载时间)分区,确保原始数据快速接入;DWD/DWS/ADS层采用业务时间(事件发生时间)分区,保证分析准确性。 场景适配: 系统时间分区:适用于实时/近实时数据(如日志)、无延迟或低延迟场景,实现简单且避免历史分区修改。 业务时间分区:适用于存在延迟或需回溯的业务数据(如订单、财务报表),需动态分区技术支持历史数据补录。 特殊处理: 复合分区:必要时可结合双分区原创 2025-07-01 08:30:00 · 36 阅读 · 0 评论 -
别再傻傻的分不清了!粒度 vs 维度 本质差异
数据仓库中的粒度与维度:核心区别与联系 粒度(Granularity)和维度(Dimension)是数据建模的两个关键概念,二者有着本质区别: 粒度描述数据的详细程度(如订单级或日汇总级),决定事实表记录的原子性; 维度提供分析视角(如时间、产品维度),是分类和筛选的依据。 主要差异: 粒度影响存储量和分析深度,维度决定分析角度; 粒度本身无层级,但可通过维度实现上卷/下钻; 维度的属性(如时间维度中的年月日)支持对固定粒度数据的多角度分析。 二者协同工作:维度定义粒度的最低级别(如"日-商品-门原创 2025-06-26 12:00:00 · 251 阅读 · 0 评论 -
数仓面试提问:如何判断业务过程划分的好坏?| 途虎养车
摘要:数据仓库业务过程划分的关键在于实现"业务可解释、数据可建模、分析可落地"三大目标。本文提出五大判断标准:1)业务动作原子化,确保每个过程对应不可拆分的独立业务动作;2)事实粒度唯一化,保证事实表具有清晰一致的粒度;3)需求覆盖全链路,满足核心指标的可拆解性;4)维度关联无死角,通过公共维度支持跨过程分析;5)资源投入ROI平衡,权衡分析价值与数据成本。文章还分析了三类典型场景的决策方法,并强调业务过程划分需要持续迭代优化,最终目标是能够动态支撑业务决策需求。(149字)原创 2025-06-24 10:00:00 · 143 阅读 · 0 评论 -
网友提问:数仓ADS层有事实表吗?|一个关于数据仓库分层架构的常见疑问
ADS 层的主要目的是提供面向最终应用的、高度聚合或轻度汇总的数据,通常以。原创 2025-06-12 11:00:00 · 1134 阅读 · 0 评论 -
数仓的“拆“与“不拆“:一场关于用户基础信息表的哲学辩论 | 基于网友提问
在数据仓库设计中,是否拆分用户基础信息表需要权衡业务场景。单表设计查询便捷、ETL简单,适合业务稳定、查询模式重合的场景;拆分设计业务边界清晰、扩展灵活,适用于高频独立访问、字段膨胀风险的场景。折中方案可将入职时间保留在基础表,离职时间拆分到事件表,并采用星型模型实现维度与事实表分离。核心原则是按业务过程建模,拆分能提升数仓的可维护性、性能和扩展性,是应对复杂业务需求的更优选择。原创 2025-06-13 09:00:00 · 929 阅读 · 0 评论 -
京东金融面试提问:数仓中共性指标如何做下沉?请谈谈你的理解
共性指标是指那些在多个业务场景、报表、分析模型中都会被使用的指标,例如:用户活跃数(DAU/MAU)订单总数、订单金额转化率(点击率、下单率等)留存率新增用户数口径统一性强计算逻辑稳定使用频次高跨部门/业务线共享共性指标下沉是构建高效、一致、可维护数据仓库的核心实践。其本质是数据模型设计中“公共性”原则的体现,是“数据资产的复用与治理”,其核心目标是实现口径统一、逻辑复用、性能优化、易于维护。它是数仓走向成熟的重要标志之一。原创 2025-06-13 09:00:00 · 104 阅读 · 0 评论 -
京东数仓面试提问:数仓中应用层怎么设计?应用层和汇总层的区别是什么?
特征汇总层 (DWS) -应用层 (ADS) -应用层 (ADS) -核心目标提供用户日粒度按类目订单行为的通用基础数据满足每日订单看板的最终展示需求满足风控模型对用户近7天订单明细行为特征的需求数据来源主要来自 DWD (订单, 用户, 商品) + DIM (类目)主要来自 DWS (跨主题:DWD (订单, 用户, 地址, 登录, 商品) +DWS(历史次数) + DIM (类目)模型特点星型/宽表,轻度汇总(用户+日+类目),轻度去规范化高度聚合宽表 (日+类目),极度去规范化,指标定制。原创 2025-06-11 09:30:00 · 105 阅读 · 0 评论 -
面试提问:数仓建模与数据分析之间到底是什么关系?
决定数据如何组织(星型、雪花型、宽表、范式化等)。原创 2025-06-04 09:00:00 · 1037 阅读 · 0 评论 -
毛台 vs 某互联网公司:如何处理多值维度(多对多关系)?
在电商系统中,一个订单可能包含多个商品,每个商品又可能出现在多个订单中;在社交网络里,用户可以拥有多个标签,而每个标签又关联着无数用户。这种复杂的交互关系催生了数据库设计中的核心命题——多对多关系的处理艺术。处理多值维度(多对多关系)是数据仓库维度建模中的核心挑战。桥接表是解决这个问题的标准方案。本文将深入探讨桥接表的设计哲学与实践智慧。以下为毛台面试某互联网公司时被问到该问题时的模拟场景,让我们一起看看毛台面试中的遭遇,以及事后我们从毛台惨败的面试中应汲取什么样的经验。原创 2025-06-09 09:00:00 · 67 阅读 · 0 评论 -
数仓面试提问:在资源(计算、存储、人力)受限的情况下,如何优先处理需求并保证核心交付?
在资源受限环境下高效保障核心交付的系统化方法 本文提出了一套完整的资源管理方法论,核心包括: 明确界定核心交付范围(业务价值、基础依赖、合规安全、客户承诺) 建立量化评估体系(RICE评分、WSJF经济优先级、MoSCoW分类、KANO模型) 实施透明沟通机制(数据可视化、机会成本分析、备选方案提供) 医疗AI项目实战案例:通过资源隔离(GPU专用)、需求量化排序(审计日志2000分>结节识别200分)和严格范围控制,5个月完成认证并超预期达成96.2%敏感度指标 关键经验:资源受限时,精准的价值判断比资源原创 2025-06-06 08:30:00 · 118 阅读 · 0 评论 -
王大锤vs某互联网公司:业务过程与粒度如何设计?
业务过程是。原创 2025-06-03 09:00:00 · 72 阅读 · 0 评论 -
蘑菇头vs某短视频公司:如何治理同名不同义的指标?
摘要:本文深入剖析了数据仓库中"同名不同义"指标问题的根源与危害,提出了系统性的治理策略。"同名不同义"指同一指标名称在不同业务场景中存在计算逻辑或口径差异,导致决策失误、信任危机等严重后果。其成因包括组织孤岛、流程缺失、技术异构等因素。治理方案需从命名规范、指标字典、生命周期管理等多维度入手,结合技术手段(如语义层、元数据管理)和组织变革(如数据治理委员会)。文章还提供了面试满分回答框架,强调要通过具体案例、技术细节和业务价值的有机结合来展现专业能力。有效的指标治理原创 2025-05-29 10:00:00 · 74 阅读 · 0 评论 -
数仓面试提问:如何将业务规划转化为数仓规划?
本文系统阐述了将业务规划转化为数仓规划的方法论,强调业务目标与数据架构的映射关系。主要内容包括:1.核心步骤:通过业务需求深度解析、指标体系构建、主题域划分等环节实现业务-数据转换;2.实施方法:提出需求锚定、架构设计、模型落地三阶段方法论,并详细说明各阶段输出物;3.电商案例:完整展示从"提升复购率"业务目标到数仓模型设计的技术落地路径;4.面试模板:提供结构化回答框架,突出业务理解、技术实现和成果量化能力。文章为数据仓库工程师提供了从业务规划到技术落地的完整解决方案。原创 2025-05-27 09:30:00 · 327 阅读 · 0 评论 -
淘天数仓面试提问:如何建立与业务方沟通机制 ? 给出建议?
本文针对数仓开发中与业务方的沟通机制提出系统化建议。首先分析面试中常见问题,指出候选人回答的不足(如缺乏体系化、业务理解不深等)。随后从需求阶段、开发阶段、交付后协同三个维度,详细阐述沟通机制建设方案:包括需求评审标准化、敏捷交付模式、数据资产门户建设等。最后提供面试回答模板,强调用"痛点-解法-价值"三段式+量化案例展示专业能力。全文突出数据驱动思维,强调通过流程优化降低沟通成本,实现技术与业务的双向价值对齐。原创 2025-05-25 23:10:57 · 53 阅读 · 0 评论 -
解码数据语言:如何优雅的进行数仓字典建设?
文章探讨了企业构建“数据词典”的重要性及其方法论。数据词典作为业务与技术的通用语言库,能够统一数据语义,消除歧义,支撑数据治理,并加速团队协作。文章详细介绍了词根的概念及其核心价值,词根是数据语义的最小单元,通过词根词库可以实现技术字段与业务术语的统一。此外,文章还阐述了数据字典的核心维度,包括词根词库的本质、分层分类、命名规范及冲突解决机制。建设方法论部分,提出了业务调研与术语收编、标准化处理四步法及自动化工具链增强等步骤。运营推广方面,建议通过分层培训体系、激励机制和动态迭代机制实现长效治理。最后,文章原创 2025-05-20 17:41:54 · 1097 阅读 · 0 评论 -
经典问题争议:数仓分层建设中,DWD、DWS、ADS哪一层最难?
在数据仓库分层建设中,DWD(明细层)、DWS(汇总层)、ADS(应用层)的难度因业务场景、团队能力和系统复杂度而异,没有绝对的“最难”。但从业务耦合度、技术复杂度和长期维护成本等维度综合来看,DWD层通常是最核心、最复杂的部分。DWD层负责数据清洗、标准化和原子指标计算,构建面向业务过程的原子表,为上层提供高质量、可复用的明细数据。其难点在于对业务理解的深度要求、数据质量治理的复杂性、ETL开发与维护的高成本以及长期维护的压力。DWS层则基于DWD层数据,按主题构建轻度聚合表,提升查询效率,难点在于维度建原创 2025-05-15 09:00:00 · 90 阅读 · 0 评论 -
CIO必修课:如何让老板为数据治理买单?
一场失败的提案“王总,我们需要启动数据治理项目,否则系统会越来越乱……”“先等等,这项目要投200万?能带来多少收入?”CIO张明无奈离场,老板的质疑让他哑口无言。痛点共鸣:70%的数据治理项目因“无法证明业务价值”被毙掉!核心结论不谈技术,只谈钱——用老板的思维说服老板。原创 2025-05-14 09:00:00 · 421 阅读 · 0 评论 -
球球 vs 懂车帝数仓岗位:数据资产沉淀主要是指DWS和ADS层的表吗?
数据资产的沉淀在企业数据仓库建设中至关重要,但常被误解为仅涉及DWS(数据仓库汇总层)和ADS(应用数据服务层)的表。数据资产应具备可控制、可量化、可复用、可管理四大特征,其沉淀需覆盖从ODS(原始数据层)到ADS的全链路。ODS层虽为原始数据,但通过治理可转化为资产;DWD层作为清洗后的原子数据,是高质量数据源的基础;DWS和ADS层则通过轻度汇总和服务化,直接驱动业务决策。反方观点认为,仅聚焦DWS和ADS层会忽视基础数据的基石作用和原始数据的潜在价值,导致全链路治理缺位。因此,数据资产沉淀应兼顾价值显原创 2025-05-13 09:00:00 · 85 阅读 · 0 评论 -
数据治理路径之辩:从“先治后用”到“边用边治”,企业如何选择最优路径?
数据治理是企业在数智化建设中的核心挑战,主要涉及三种时序策略:先治理后使用、先用后治理和边用边治。先治理后使用强调在数据应用前建立完整的治理框架,适合高合规要求的行业,但可能响应滞后。先用后治理则优先释放数据价值,适合快速变化的业务环境,但可能累积数据质量问题。边用边治寻求动态平衡,通过持续改进实现治理与应用的同步迭代,适合复杂数据环境。技术选型决策矩阵和实施方法论提供了具体的操作指南,建议根据组织特性和业务需求选择适配方案,并通过渐进式演进路径实现治理与业务的共生演进。原创 2025-05-09 08:30:00 · 185 阅读 · 0 评论 -
王炸vs某互联网公司:数仓中,什么情况下需要进行数据回溯?需要注意什么?
我们更希望候选人能系统性思考问题,比如:回溯场景需分数据质量、规则变更、合规需求等类型;技术上需结合分区、增量更新、快照隔离;协作上要通知下游并清理缓存;成本上需权衡是否值得回溯老旧数据。你今天的回答偏基础,建议加强工程实践和全局视角。原创 2025-05-08 09:00:00 · 319 阅读 · 0 评论 -
李荣浩vs某游戏公司:数仓建设中,如果用户表频繁更新,像事实表一样细长,怎么解决?
问题本质:维度表高频更新是模型设计未能匹配业务动态性的结果,需通过数据域重构解决。阿里经验提炼:坚持“维度静态化、状态事实化”原则,以离线批处理支撑动态属性的高效管理。关键结论高频更新属性必须事实化:避免维度表承担动态数据写入压力。离线批处理是核心手段:通过每日快照平衡存储与查询性能。最佳实践属性分类:设计阶段明确区分静态属性与动态属性。自动化运维:通过调度工具(如Airflow)管理快照生成任务。监控告警:跟踪事实表的数据增长速率和快照任务执行时长。原创 2025-04-28 16:10:03 · 76 阅读 · 0 评论 -
面试提问:你设计的模型是通用的吗?如何量化?| 通用模型 vs 自定义模型
数据仓库建设本质是在不确定中寻找确定性的过程。建议技术团队:建立模型健康度看板:监控指标包括需求命中率、重构频率、存储成本/查询量比设计灰度升级机制:新模型先在5%流量验证,通过A/B测试对比效果培养"标准化优先"文化:强制要求所有定制开发必须证明其无法被现有模型覆盖最终,优秀的数仓架构师应像围棋高手:在标准定式与妙手偶得间找到最佳平衡点。原创 2025-04-27 09:00:00 · 67 阅读 · 0 评论 -
妹爷vs快手数仓:DWS层构建好后,新来了一个需求,需要添加某个维度字段,你是怎么考虑和设计的?
DWS层的设计本质是在稳定性与灵活性间寻找平衡。最小化侵入:优先通过逻辑层解耦(视图/外键化)按需物化:高频维度预计算,长尾维度动态关联自动化兜底:用数据质量监控+元数据治理降低风险业务驱动演进:避免技术理想化设计,贴合实际查询模式最终,优秀的数仓架构应像乐高积木一样——每个模块可独立替换,但整体始终稳固可靠。原创 2025-04-25 08:30:00 · 123 阅读 · 0 评论 -
面试提问:数仓里面指标计算的正确性如何验证,有好的方法吗?
按“数据输入→处理→业务→输出→监控→流程”分层展开,体现系统性。原创 2025-04-22 09:00:00 · 313 阅读 · 0 评论 -
猪小明vs飞猪数据团队:数仓中既然有了主题域,为什么还要划分数据域?
简要说明主题域和数据域的概念。原创 2025-04-21 09:00:00 · 394 阅读 · 0 评论 -
面试灵魂拷问:原子指标需要支持开窗函数吗?
在数据仓库与指标体系的构建中,原子指标的定义一直是核心争议点之一。原子指标是否需要原生支持开窗函数?本文将从设计哲学分层架构工程实践三个维度展开分析,结合具体案例探讨这一问题的本质,最终给出可落地的建议。面试背景公司:某头部电商平台(数据中台团队)岗位:数据仓库开发工程师(高级)面试官:数据架构师(10年经验)问题背景:面试官希望考察候选人对数据建模、指标体系的深度理解,以及技术权衡能力。问题“原子指标需要支持开窗函数吗?为什么?面试场景还原面试官:小撒同学,我看你简历里提到负责过电商指标体系的建设。原创 2025-04-18 08:30:00 · 58 阅读 · 0 评论 -
晋升答辩提问:既然业务需求已经很明确了,你数仓建模的价值体现在哪?
建模是「需求与数据的解耦器」短期需求:直接写SQL更快,但会制造技术债务(如烟囱式报表);长期架构:建模通过分层与抽象,将业务需求解耦为可复用的数据组件(事实表、维度表、聚合表),让数据从「项目制交付」升级为「产品化服务」。最终目标:即使需求明确,建模也是为不确定性做准备需求明确解决的是「要什么」,而建模解决的是「如何高效、稳定、可持续地实现」。就像一个建筑师不仅需要理解客户想要「三居室」,更需通过结构设计、材料选型、管线规划,让房屋既满足当前需求,又具备未来改造的可能性。原创 2025-04-16 09:00:00 · 172 阅读 · 0 评论 -
川普vs某互联网金融科技公司:面试提问数据建模,必须由数仓团队来做吗?业务系统不能做吗?
近日川建国(资深数仓工程师)同志面试某互金科技公司惨遭失败,被面试官问到“数据建模,必须由数仓团队来做吗?业务系统不能做吗?” 这一问题时不知道该如何回答。川建国吐槽:“看来现在数仓面试都在玩哲学,作为数仓界的扛把子,这些问题,我是重来没想到过的,看来我还得继续修炼,至少得读读唯物辩证法”。以下是整个面试的过程,我们一起来看一下川建国的遭遇。原创 2025-04-14 08:15:00 · 233 阅读 · 0 评论 -
潘子vs小红书数仓团队:数仓分主题预计算的好处和坏处是什么?
提到技术趋势(如湖仓一体、实时数仓)会加分,例如: “现在许多公司尝试湖仓一体架构,将预计算与原始数据共存,通过动态查询加速技术(如Databricks Delta Lake)兼顾灵活性和性能。好处嘛,就是查询快,因为数据提前算好了。: “预计算通过提前加工高频使用的指标(如销售额、用户留存),将复杂查询转为轻量查询,适合BI报表、看板等固定分析场景,显著降低查询延迟。未来,随着实时数仓与湖仓一体技术的成熟,预计算可能与动态查询加速进一步融合,但“用存储换时间”的核心思想将始终是数据架构设计的底层逻辑。原创 2025-04-12 09:00:00 · 166 阅读 · 0 评论 -
小杨哥vs滴滴数仓负责人: 如何证明你建的模型就比别人的好?
未将技术优化与业务增长(如订单转化率、用户留存)关联,仅停留在技术实现层。原创 2025-04-10 08:15:00 · 178 阅读 · 0 评论 -
王小虎 vs 快手面试官:指标生命周期管理在指标下线阶段会从哪些维度来评估判断下线? 下线的流程是什么?
方法论沉淀:能否将指标下线抽象为标准化流程,而非依赖临时决策。风险预判:是否对“下线动作”可能引发的业务、技术、法律风险有预判和应对方案。价值导向:能否从数据资产管理的角度,说明下线动作对企业的长期价值(如降本增效)。仅回答了“What”(下线做什么),却未体现“Why”(为何要评估这些维度)和“How”(如何安全落地),而这正是数据治理岗位的核心能力要求。~~【文末附面试满分回答模板】~~一、为什么指标下线比上线更难?指标下线看似是简单的“删除动作”,实则是业务、技术、合规的三角博弈业务风险。原创 2025-04-10 08:15:00 · 155 阅读 · 0 评论 -
王二狗 vs 京东面试官:作为数仓工程师是如何和业务方沟通需求的?需求模糊或存在冲突时,你是怎么处理的?
所有回答需围绕“降本增效”“用户体验”“GMV增长”等业务目标展开;原创 2025-04-04 08:00:00 · 551 阅读 · 0 评论