二叉树搜索性能分析
我想测试一下不同类型的二叉树搜索数据的性能是什么样的。
众所周知,二叉树有以下几种类型:
- BST
- AVL
- 红黑树
对于搜索数据,具体来讲,当树保持平衡时,其搜索时间复杂度是O(log2n),当树退化成链表时,其搜索时间复杂度变成O(n),其他情况下树的平均搜索时间复杂度就介于这两者之间。
事实上红黑树的插入、删除、查找、旋转等操作都被控制在O(log2n)之中,对数级别的时间复杂度,使得红黑树尤其适用于数据无序程序高、数据量庞大且需要快速定位节点的场合。
测试环境
测试主机频率是4GHz,运行在ubuntu20.04系统上。
程序设计
设计一个程序,实现以下功能:
-
分别创建一棵BST树、一棵AVL树、一棵红黑树
-
使用for循环递增整数i生成数据,i取值范围是[0,9999999]
-
给三棵二叉树插入相同的数据
-
搜索所有插入的数据并统计用时
-
打印出所有二叉树的搜索用时
代码示例
核心代码如下:
#define TREE_NODE_NUM 1000000 //搜索的数据量
#define BST_SEARCH 0 //BST搜索开关
#define AVL_SEARCH 0 //AVL搜索开关
#define RB_SEARCH 1 //红黑树搜索开关
extern void rb_insert(linktree *proot, linktree new);
//extern linktree rb_find(linktree root, tn_datatype data);
extern linktree bst_find(linktree root, tn_datatype data);
extern linktree bst_insert(linktree root, linktree new);
int main(void)
{
linktree avl_root = NULL; //avl树的根节点指针
linktree bst_root = NULL; //bst树的根节点指针
linktree rb_root = NULL; //红黑树的根节点指针
linktree tmp; //待查找的节点指针
int find_counts; //找到的节点数
int node_to_find; //待查找的数据
int num[TREE_NODE_NUM];
volatile int i = 0;
int n; //保存待插入的数据
//生成数据
for (i=0; i<TREE_NODE_NUM; i++)
{
num[i] = i;
}
i = 0;
while(i < TREE_NODE_NUM)
{
n = num[i];
#if AVL_SEARCH
//插入avl树节点
linktree avl_new = new_node(n);
avl_root = avl_inse

该博客通过实验分析了不同类型的二叉树(BST、AVL、红黑树)在搜索性能上的表现。在数据平衡的情况下,AVL树表现出最佳的搜索效率,其次是红黑树,而BST在树退化为链表时性能最差。测试结果显示树的平衡状态显著影响搜索速度。
最低0.47元/天 解锁文章
2125

被折叠的 条评论
为什么被折叠?



