二叉树搜索性能比较

该博客通过实验分析了不同类型的二叉树(BST、AVL、红黑树)在搜索性能上的表现。在数据平衡的情况下,AVL树表现出最佳的搜索效率,其次是红黑树,而BST在树退化为链表时性能最差。测试结果显示树的平衡状态显著影响搜索速度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

二叉树搜索性能分析

我想测试一下不同类型的二叉树搜索数据的性能是什么样的。

众所周知,二叉树有以下几种类型:

  • BST
  • AVL
  • 红黑树

对于搜索数据,具体来讲,当树保持平衡时,其搜索时间复杂度是O(log2n),当树退化成链表时,其搜索时间复杂度变成O(n),其他情况下树的平均搜索时间复杂度就介于这两者之间。

事实上红黑树的插入、删除、查找、旋转等操作都被控制在O(log2n)之中,对数级别的时间复杂度,使得红黑树尤其适用于数据无序程序高、数据量庞大且需要快速定位节点的场合。

测试环境

测试主机频率是4GHz,运行在ubuntu20.04系统上。

程序设计

设计一个程序,实现以下功能:

  1. 分别创建一棵BST树、一棵AVL树、一棵红黑树

  2. 使用for循环递增整数i生成数据,i取值范围是[0,9999999]

  3. 给三棵二叉树插入相同的数据

  4. 搜索所有插入的数据并统计用时

  5. 打印出所有二叉树的搜索用时

代码示例

核心代码如下:

#define TREE_NODE_NUM 1000000	//搜索的数据量

#define BST_SEARCH 	0	//BST搜索开关
#define AVL_SEARCH 	0	//AVL搜索开关
#define RB_SEARCH 	1	//红黑树搜索开关

extern void rb_insert(linktree *proot, linktree new);
//extern linktree rb_find(linktree root, tn_datatype data);
extern linktree bst_find(linktree root, tn_datatype data);
extern linktree bst_insert(linktree root, linktree new);

int main(void)
{
   
	linktree avl_root = NULL;	//avl树的根节点指针
	linktree bst_root = NULL;	//bst树的根节点指针
	linktree rb_root = NULL;	//红黑树的根节点指针
	linktree tmp;	//待查找的节点指针
	
	int find_counts;	//找到的节点数
	int node_to_find;	//待查找的数据
	
	int num[TREE_NODE_NUM];
	
 	volatile int i = 0;
	int n;	//保存待插入的数据
	
    //生成数据
	for (i=0; i<TREE_NODE_NUM; i++)
	{
   
		num[i] = i;
	}
	
	i = 0;	
	while(i < TREE_NODE_NUM)
	{
   
		n = num[i];
		
#if AVL_SEARCH
		//插入avl树节点
		linktree avl_new = new_node(n);
		avl_root = avl_inse
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值