输入一个正数S,打印出所有和为S的连续正数序列(至少含有两个数)。例如输入15,由于1+2+3+4+5=4+5+6=7+8=15,所以结果打印出连续序列:1-5,4-6,7-8这三个序列.
方案一:时间复杂度为O(N*N)。通过循环来求解。效率较低,不在多赘述。
方案二:有了【41】的的经验方法后,我们可以用这样一种方法来得到连续整数序列。时间复杂度为O(N)。
方案一:时间复杂度为O(N*N)。通过循环来求解。效率较低,不在多赘述。
方案二:有了【41】的的经验方法后,我们可以用这样一种方法来得到连续整数序列。时间复杂度为O(N)。
我们以S=9为例来分析其过程如下:
具体实现代码如下:#include <iostream>
using namespace std;
void PrintSequence(int start,int end)
{
cout<<"Sequence: ";
for(int i=start;i<=end;i++)
cout<<i<<" ";
cout<<endl;
}
void FindSequenceNum(int sum)
{
if(sum<3)
return ;
int start=1;
int end=2;
int mid=(1+sum)/2;
int CurSum=start+end;
while(start<mid)
{
if(CurSum==sum)
PrintSequence(start,end);
while(CurSum>sum && start<end)
{
CurSum-=start;
start++;
if(CurSum==sum)
PrintSequence(start,end);
}
end++;
CurSum+=end;
}
}
int main()
{
FindSequenceNum(15);
system("pause");
return 0;
}
运行结果如下:
通常我们是通过循环来求解,但是由于里面有大量的计算步骤属于重复,所以我么通过利用上次求解的结果再进行下一次的求解,这样提高了算法的效率。