扩散模型解析



PDF版本下载地址下载链接

1

1.1


  1.                 ∫    ∫    ∫ ˆ                +∞   + ∞   +∞           - i(xωx+yωy+zωz)C (ωx,ωy,ωz,t) = -∞   - ∞   -∞  C(x,y,z,t)e             dxdydz = F (C)
    (1)


  2.                   ∫ + ∞ ∫ +∞ ∫ +∞C (x,y,z,t) = --1--                ˆC (ω  ,ω  ,ω  ,t)dω dω  dω             (2π)3 - ∞   -∞   -∞      x  y  z    x   y  z
    (2)

  3. 线性性
    F (αC1 (x,y,z,t)+ βC2 (x,y,z,t)) = αF (C1)+ βF (C2 )
    (3)


  4. F (Cx (x,y,z)) = iωxF (C ) = iωxCˆ(ωx,ωy,ωz)                             ˆF (Cy (x,y,z)) = iωyF (C ) = iωyC (ωx,ωy,ωz)F (Cz (x,y,z)) = iωzF (C ) = iωzCˆ(ωx, ωy,ωz)
    (4)

1.2 线

dC- dt +P(t)C=Q(t)线分方Maple1


PIC

 1: 线分方


1

     ∫       (∫      ∫              )C = e  -P(t)dt    Q(t)e  P(t)dtdt+ const
(5)

1.3

续性C=f(t),点的hti-2,ti-1,ti,ti+1⋅⋅⋅点的纵坐别标Ci-2,Ci-1,Ci,Ci+1⋅⋅⋅iC=f(t)

         (   )             (  2 )             (  3  )             (  4  )C = Ci +  dC-   (t- ti)+  1- d-C2   (t - ti)2 +-1  d-C3-  (t- ti)3 + 1  d-C4-  (t- ti)4 + ⋅⋅⋅           dt  i         2!  dt   i         3!   dt   i         4!  dt   i
(6)

(  ) ddCt-i,(  2 )  ddCt2-i,⋅⋅⋅别表t=ti

      i-1     t=ti-1 =xi-h

      i+ 1     t=ti+1 =xi +h

CCti-1ti+1

            (   )        (  2 )         (  3 )         ( 4  )C    = C  -  dC-   h+  1-  d-C-  h2 - 1- d-C-   h3 +-1  d-C-   h4 - ⋅⋅⋅  i- 1    i    dt  i    2!  dt2  i     3!  dt3  i    4!   dt4  i            (dC )      1 ( d2C)       1 (d3C )       1 (d4C )Ci+1 = Ci +  ---   h+  --  --2-  h2 + -- ---3   h3 +--  ---4   h4 - ⋅⋅⋅              dt  i    2!  dt   i     3!  dt   i    4!   dt   i
(7)

hh3更高(  ) ddCt-i,(    )  d2dCt2-i

 (    )   dC-   = Ci+1---Ci-1    dt  i      2h( d2C )    Ci+1 - 2Ci + Ci-1  -dt2   = -------h2-------        i
(8)

1.4

的第”,

1.5 ,

1.5.1

A (x,y,z) = P (x,y,z)i + Q(x,y,z)j + R (x,y,z)k
(9)

PQRΣnΣ(x,y,z)

∫ ∫    A ⋅ndS Σ
(10)

AΣ

两类

∫∫           ∫ ∫          ∫∫   A  ⋅ndS =     A ⋅dS =     P dydz + Qdzdx + RdxdyΣ             Σ           Σ
(11)

1.5.2

A(x,y,z) = P(x,y,z)i+Q(x,y,z)j+R(x,y,z)k∂P- ∂x + ∂Q--∂y +∂R--∂zAdivA

       ∂P    ∂Q    ∂RdivA = -∂x + ∂y- + ∂z-
(12)

AdivA∇⋅A

divA = ∇ ⋅A
(13)

1.5.3

ΩΣP(x,y,z),Q(x,y,z),R(x,y,z)Ω

∫∫∫  (               )      ∫∫       ∂P-  ∂Q-   ∂R-       ∂x +  ∂y + ∂z   dv =    P dydz + Qdzdx + Rdxdy Ω                          Σ
(14)

     (               )∫ ∫∫   ∂P    ∂Q   ∂R        ∫ ∫       ∂x- + ∂y-+ -∂z  dv =     (P cosα+ Q cosβ + R cosγ)dS  Ω                          Σ
(15)

∫ ∫∫           ∫∫     divAdv  =     AndS  Ω            Σ
(16)

∫∫ ∫           ∫∫     ∇ ⋅Adv  =     AndS Ω              Σ
(17)

2

2.1 件假

  1. 定的>2000),动的为紊;

    Reynolds numberρv2Lμv-L2

    流流

    递动 ____________________________________________________________________________

    为紊

    ____________________________________________________________________________

  2. 任取SΩC(x,y,z,t)t(x,y,z)点的;
  3. 子自而发Dx,Dy,Dz别表x,y,z;
  4. 使K(0< K < 1);
  5. θ(x,y,z,t)(x,y,z)t;
  6. 沿x,y,zux,uy,uz定的

2.2

使C,θC(x,y,z,t)θ(x,y,z,t)

  1. 意义SΩ
          ∫∫ (                                     )              ∂C-          ∂C-         ∂C-M1 =       Dx ∂x cosα + Dy ∂y cosβ + Dz ∂z cosγ  dS      Σ
    (18)

         ∫ ∫∫  (   ∂2C      ∂2C      ∂2C )M1 =        Dx ∂x2-+ Dy ∂y2-+ Dz ∂z2-  dxdydz       Ω
    (19)

  2. 由于动的SΩ
         ∫ ∫M2 =     (uxC cosα + uyC cosβ + uzC cos γ)dS      Σ
    (20)

         ∫ ∫∫  (                     )               ∂C-    ∂C-     ∂C-M2 =        ux ∂x + uy ∂y + uz∂z   dxdydz       Ω
    (21)

  3. 由于Ω
          ∫∫ ∫M3  =      (KC )dxdydz       Ω
    (22)

  4. Ω
         ∫∫ ∫M4 =      θdxdydz      Ω
    (23)

  5. Ω
          ∫∫ ∫M5  =      ∂C-dxdydz            ∂t       Ω
    (24)

M5 = M1  - M2 - M3 + M4
(25)

19,21,22,23,2425,得到4D

∂C       ∂2C      ∂2C      ∂2C      ∂C      ∂C     ∂C--- = Dx ---2 + Dy---2 + Dz---2 - ux---- uy ---- uz--- - KC  + θ ∂t      ∂x       ∂y       ∂z       ∂x      ∂y     ∂z
(26)

3

3.1

  1. 26
    dCˆ(ωx,ωy,ωz,t)= - (D  ω2 + D ω2 + D ω2 + iω u + iω u  + iω u  + K ) ˆC (ω ,ω ,ω ,t) + ˆθ(ω ,ω ,ω ,t)      dt              x x    y y    z  z    x x    y y    z z          x  y  z        x  y  z
    (27)

  2. 线分方27
    ˆC (ωx,ωy,ωz,t) =e- (Dx ωx2+Dy ω2y+Dz ω2z+iωxux+iωyuy+iωzuz+K)t                  ( ∫ t                                                           )                ×      ˆθ(ωx,ωy,ωz,t)× e(Dxω2x+Dy ω2y+Dz ω2z+iωxux+iωyuy+iωzuz+K)tdt+ const                     0
    (28)

    Maple2


    PIC
     2: 分方


  3. 28
                  1  ∫ +∞ ∫ + ∞∫  +∞  -(Dxω2+Dy ω2+Dz ω2+iωxux+iωyuy+iωzuz+K)tC(x,y,z,t) = (2π)3               e     x    y    z              ( ∫ -t∞   - ∞   -∞                                               )            ×      ˆθ(ω ,ω ,ω ,t)× e(Dxω2x+Dyω2y+Dzω2z+iωxux+iωyuy+iωzuz+K)tdt+ const  dω dω dω                 0    x  y  z                                                     x  y   z
    (29)

29ˆθ(ωx,ωy, ωz,t)ωxyz29

3.2

26

(|      ∂C-=  D ∂2C + D  ∂2C-+ D  ∂2C- u  ∂C-- u ∂C-- u ∂C-- KC                     (30)|||      ∂t    x ∂x2     y∂y2    z∂z2    x∂x    y∂y    z∂z|{     C (x,y,z,0) = M δ(x)δ(y)δ(z)                                                (31)||||     xl→im±∞ C(x,y,z,t) = 0,yli→m±∞ C (x, y,z,t) = 0,z l→im± ∞C (x,y,z,t) = 0               (32)|(     - ∞ <  x < + ∞, - ∞ < y < +∞, - ∞ < z < + ∞, t > 0                         (33)
31 32
  1. 30
    dˆC (ω  ,ω ,ω ,t)     (                                             )-----x--y--z---= -  Dx ω2x + Dy ω2y + Dz ω2z + iωxux + iωyuy + iωzuz + K Cˆ(ωx,ωy,ωz,t)      dt
    (34)

    31

                    ∫  +∞ ∫ +∞ ∫ +∞               -i(xωx+yωy+zωz)Cˆ(ωx,ωy,ωz,0) =                M δ(x)δ(y)δ(z)e             dxdydz                ∫ -+∞∞  -∞   -∫∞+∞       ∫ +∞            =M       δ(x)dx      δ(y)dy     δ(z)dz                 - ∞         -∞         -∞            =M
    (35)

  2. 3435得到Ĉ(ωx,ωy, ωz,t)
                       -Kt   - D ω2+D ω2+D ω2+iω u +iω u +iω u  tˆC (ωx,ωy,ωz,t) = M e   ⋅e ( x x  y y  z z  x x  y y  z z)
    (36)

    Maple3


    PIC
     3: 分方


  3. 36得到C(ωx,ωy,ωz,t)
                              1   ∫ +∞ ∫ +∞ ∫ +∞C (ωx,ωy,ωz,t) = M e-Kt ⋅---3                Cˆ(ωx,ωy,ωz,t)ei(xωx+yωy+zωz)dωxdωyd ωz                   ∫    (∫2π)  ∫-∞   -∞   -∞          -Kt --1--  +∞    +∞   +∞  -(Dxω2x+Dyω2y+Dzω2z+iωxux+iωyuy+iωzuz)t+i(xωx+yωy+zωz)     = M e   ⋅(2π)3 - ∞   -∞   -∞  e                                             dωxd ωydωz                   ∫ +∞                       ∫ +∞                       ∫ +∞     = M e-Kt⋅--1--     e- (Dxω2x+iωxux- iωxux)d ωx     e-(Dyω2y+iωyuy-iωyuy)dωy      e-(Dzω2z+iωzuz-iωzuz)dωz              (2π)3 - ∞                        -∞                         -∞          -Kt   1   -1∕4(x-tux)2√--  1    - 1∕4(y-tuy)2√ --  1    - 1∕4(z-tuz)2√ -- 1     = M e   ⋅(2π)3e     tDx   π √tD--⋅e      tDy    π∘-----⋅e      tDz    π√tD---                                  (  x                 tDy           )        z              -------M---------      (x---tux)2  (y --tuy)2  (z---tuz)2-        =     8(πt)32 ∘D--D--D-exp  -   4tDx   -   4tDy   -    4tDz    exp(- Kt)                        x  y z
    (37)

    Maple4


    PIC
     4:


3.3

3.3.1

解进

             ∫                      (           2         2           2)               t -------vc--------      (x--tux)-  (y---tuy)-  (z---tuz)-C (x,y,z,t) = 0  8(πt)32 ∘D--D-D--exp  -   4tDx   -   4tDy   -   4tDz     exp(- Kt )dt                           x y  z
(38)

vc别表内排

3.3.2 分方法


TN0 = t0 < t1 < t2⋅⋅⋅< tN-1< tN =Tti+1-ti =h(i = 0,1⋅⋅⋅N-1,h=T-N).点都hvc到独由于各个),各个的当36

                                  (           2          2            2)              ------M-h--------      (x---tiux)-  (y --tiuy-)  (z --tiuz)C (x,y,z,ti) = 8(πt)32 ∘D--D--D--exp  -   4tiDx   -   4tiDy    -   4tiDz    exp(- Kti)                  i     x  y z
(39)

            ∑NC(x,y,z,t) =    C(x,y,z,ti)             i=0
(40)

N→∞

             N∑                            ∫ TC (x,y,z,t) =    C (x,y,z,ti) → C (x,y,z,t) =    C (x,y,z,t)dt             i=0                            t=0
(41)

是式38

各个各个的当度的

便26

∂C-      ∂2C-     ∂2C-     ∂2C-     ∂C-     ∂C-    ∂C- ∂t = Dx ∂x2 + Dy ∂y2 + Dz ∂z2 - ux ∂x - uy ∂y - uz∂z  - KC  + θ

方法38

(      2 ∑N||     ∂-(-i=1C∂x(2x,y,z,ti)) = ∑Ni=1 ∂2C(x∂,yx2,z,ti)                                 (42)||||     ∂(∑N  C(x,y,z,ti))  ∑{     ----i=1-∂x------ =    Ni=1 ∂C(x,∂y,xz,ti)-                                   (43)|       ( ∑N             )   ∑N||||     K     i=1 C(x,y,z,ti)  =   i=1(KC (x,y,z,ti))                         (44)|(     ∂(∑Ni=1C(x,y,z,ti))   (∑Ni=1∂C(x,y,z,ti))             ∂t      =        ∂t                                         (45)

3.4

3.4.1

x

   ∂2C(x)     ∂C (x)Dx ----2--- ux------- KC  (x ) = 0    ∂x          ∂x
(46)

得到

             ( (    √ --2--------)  )C (x) = C0exp  -ux ---ux--+-4KDx--x-                       2Dx
(47)

maple5


PIC

 5:


- ux∂C-(x-)- KC (x) = 0     ∂x
(48)

得到

            (      )C(x) = C0exp  - Kx-                ux
(49)

maple6


PIC

 6:


3.4.2

   ∂2C (x,y,z)      ∂2C(x,y,z)     ∂2C (x,y,z)    ∂C (x,y,z)     ∂C (x,y,z)     ∂C (x,y,z)Dx ------2----+ Dy -----2----+ Dz ------2----- ux----------- uy ----------- uz----------- KC (x,y,z) = 0      ∂x              ∂y              ∂z             ∂x            ∂y             ∂z
(50)

仿4750

                 (  (       ∘ -----4-----)    (      ∘ ------4----)    (      ∘ ------4----)  )                 |  --- ux-+--ux2 +-3KDx--x-  -- uy-+--uy2 +-3KDy---y- -- uz-+--uz2 +-3KDz---z|C (x, y,z ) = C0exp ( -         2Dx           -          2Dy           -          2Dz           )
(51)

maple7


PIC

 7:



©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页