几个月前,我们几个半吊子讨论了深空通信的问题, 原文看这里。今天,和天线专业的老师聊天,才弄清楚一些问题。看起来隔行如隔山。前面我们讨论的几个很民科的议题包括:
- 自由空间耗散公式(弗里斯公式)里的常数 -32.44 dB 到底和气压有木有关系。原因是当时在网上看到一个文章,提到了这个公式是在一个大气压下应用的。
- 有没有方法计算天线的特性?查阅资料,发现方向图和有限元分析就是干这个的,不过好用的建模分析软件一般很专业,基本都是要花钱的。使用Matlab 的天线工具箱,可以研究一些简单的模型。
1.弗里斯公式和常数由来
1.1.发射部分
假设三维空间一个全向均匀的天线,向外发射电磁波。则在空间距离D处,这个球面所在位置的功率密度为
E
=
1
A
=
1
4
π
D
2
E={1 \over A}={1 \over {4\pi D^2} }
E=A1=4πD21
E的量纲为“每平方米”,即,如果发射能量为1单位,D距离(米)为半径的球面上,单位面积1平方米对应的能量为E单位。
1.2.接收部分
在D距离处,有一个等效的全向天线(一个理想振子)。全向天线阵子可以理解是一个导线,等效面积究竟是多少呢?这里用到一个全向天线的“电尺寸”概念,一个全向理想振子的等效截面积是
S
=
λ
2
4
π
S={\lambda^2 \over {4\pi } }
S=4πλ2
上述波长
λ
\lambda
λ单位为“米”,后面发现这个单位“米”很关键。S量纲为“平方米”
1.3.收发合并
收发合并后,接收到的能量密度:
R
=
E
S
=
1
4
π
D
2
λ
2
4
π
R=ES={1 \over {4\pi D^2} }{\lambda^2 \over {4\pi } }
R=ES=4πD214πλ2
R是比例(百分比),无量纲。由于波长等于光速除以频率,即:
λ
=
C
F
\lambda= {C\over F}
λ=FC
因此上式可以写为:
R
=
E
S
=
1
4
π
D
2
C
2
4
π
F
2
R=ES={1 \over {4\pi D^2} }{C^2 \over {4\pi F^2 } }
R=ES=4πD214πF2C2
注意,光速为 300000000米/秒,频率单位为赫兹(Hz)
1.4. 带入单位得到弗里斯公式
出现常数的原因,是用d千米(km)表示距离D,用 f 兆赫兹(MHz)表示频率F。这样,上述公式变为:
R
=
1
4
π
(
1
0
3
d
)
2
(
3
×
1
0
8
)
2
4
π
(
1
0
6
f
)
2
=
(
3
40
π
)
2
(
1
d
)
2
(
1
f
)
2
R={1 \over {4\pi (10^3d)^2} }{(3 \times10^8 )^2 \over {4\pi (10^6f)^2 } }=({3\over{40\pi}})^2({1\over d})^2({1\over f})^2
R=4π(103d)214π(106f)2(3×108)2=(40π3)2(d1)2(f1)2
换算为分贝
r
=
10
lg
R
=
20
lg
3
40
π
−
20
lg
d
−
20
lg
f
=
−
32.4
−
20
lg
d
−
20
lg
f
r = 10\lg R=20\lg {3\over{40\pi}}-20 \lg d -20 \lg f=-32.4-20 \lg d -20 \lg f
r=10lgR=20lg40π3−20lgd−20lgf=−32.4−20lgd−20lgf
可见,这个-32.4不是用温度、气压弄出来的经验值,而是因为使用了MHz、Km作为单位,结合光速折算出来的确切值,保留四位小数,就是 -32.4418。
2.天线增益
天线的增益被定义为在某个方向、距离上收到的能量,与理想全向天线相同方向、距离上收到的能量的比值,也就是dBi (理想全向天线),没有量纲。由于能量是守恒的,在一个方向上强,其他地方就肯定弱。下图是Matlab天线工具箱输出的某类天线的方向图(来自互联网)。
由于方向图描述的是与理想全向天线相比的比例,且在理想情况下,收、发具有互换一致性,因此,可以直接结合弗里斯公式进行增益叠加。这里需要注意的是,天线设计软件在计算方向图时,已经通过物理尺寸、波长,把“电尺寸”和“等效截面积”因素涵盖进去了。
对于具备反射面的天线,比如抛物面天线,其增益会非常集中。当天线尺寸显著大于波长时,可以使用面积大小直接比较增益的高低。在前文中,计算60米抛物面天线的增益应该与相应频段的等效理想全向馈源面积比较,而不是与1平方米的绝对值比较。经过天线专业老师的推测,60米天线的增益可高达70dBi以上。