使用 Python 进行自然语言处理第 5 部分:文本分类

210 篇文章 ¥29.90 ¥99.00
本文介绍了文本分类的概念,以及使用NLTK和sklearn进行文本分类的方法。通过电影评论数据和亚马逊评论数据,展示了如何进行数据预处理、特征提取和模型训练。最后,利用Keras的嵌入层进行了深度学习的文本分类。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、说明

        关于文本分类,文章已经很多,本文这里有实操代码,明确而清晰地表述这种过程,是实战工程师所可以参照和依赖的案例版本。 本文是 2023 年 1 月的 WomenWhoCode 数据科学跟踪活动提供的会
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无水先生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值