
射影几何和slam基础
文章平均质量分 94
本专栏是slam技术的基础,以高等几何为背景。其中系统地记录相关的几何知识、并将部分slam内一些数学基础知识也归于本栏目。
无水先生
擅长数学,能熟练应用泛函分析、统计学、随机过程、逼近论、微分几何、非欧几何(双曲、共形)等数学理论,有数学建模能力。从事图像处理二十年以上,从事人工智能行业10年以上;在船舶、通信、铁路、教育等行业开发软件产品。
展开
-
【SLAM技术】【1】 基础知识
您对于slam没有任何概念吗?那么,该文针对自动驾驶行业、移动机器人行业,抽取出一些最简短的概念,用来解释slam的产生,作用和发展轮廓。原创 2021-03-31 14:48:50 · 5033 阅读 · 3 评论 -
2021-04-15 深入理解SLAM技术 【2】 SLAM的框架
自动驾驶的SLAM(Simultaneous Localization and Mapping)是指在无人驾驶过程中,系统需要同时定位车辆的位置并构建车辆所在环境的地图。这是自动驾驶系统中的核心技术之一,对于保证驾驶的精度和安全至关重要。原创 2021-04-15 12:04:12 · 5123 阅读 · 1 评论 -
深入理解SLAM技术概述
SLAM(同步定位和地图绘制)是一种用于自动驾驶车辆的方法,可让您构建地图并同时在该地图中定位您的车辆。SLAM 算法允许车辆绘制未知环境的地图。工程师利用地图信息来执行路径规划和避障等任务。原创 2021-04-21 14:16:05 · 8529 阅读 · 1 评论 -
SLAM知识[7]:依赖项和安装
本篇描述整个slam系统下有哪些重要组成,以及这些组成所依赖的软件包,进而影响到它们在python下的安装;并简要描述了各个组成部分的安装过程。原创 2021-08-24 08:39:54 · 7070 阅读 · 0 评论 -
【射影几何高级】射影平面的近代研究
1 平面到平面的射影定义1.1.2 设π与π′是欧氏空间中两个不同的平面,点O不在π上也不在π′上,对于平面π上任一点A,如果直线OA交π′于A′,则记为A′=φ(A).这样定义的平面π与π′之间的对应φ:ππ′叫平面中心射影,也简称为中心射影,O是射影中心.与直线之间的中心射影一样,平面中心射影的逆对应也是中心射影. 如果平面π与π′相交,那么两平面的交线上每一点在中心射影下是不变的 一般地φ仍把平面π上直线变为π′上直线, φ 把相交直线变为相交直线有个特殊情况,可将P1上直线AB.原创 2021-05-21 15:15:41 · 4952 阅读 · 1 评论 -
【射影几何15】python双曲几何工具geometry_tools
Geometry_tools 是一个 Python 包,旨在帮助您处理和可视化双曲空间和射影空间上的群动作。原创 2024-02-10 17:20:21 · 3232 阅读 · 0 评论 -
【射影几何13 】梅氏定理和塞瓦定理探讨
在射影几何中,梅涅劳斯(Menelaus)定理和塞瓦定理是非常重要的基本定理。通过这两个定理,可以导出多项结论,如:极点-极线性质、德萨格定理、pascal定理等;本篇专门叙述这两个定理证明。及相关启发。原创 2024-02-07 13:35:43 · 4364 阅读 · 0 评论 -
【射影几何11】pappus定理、和Pascal定理的证明
定理是射影几何的基本性质,也是理论基础;与pappus类似的是pascal定理,本篇围绕此二定理的证明,以及相关引理证明进行展开。原创 2024-01-27 01:40:38 · 3574 阅读 · 0 评论 -
【射影几何10】完全四边形和交比研究
对于交比的灵活应用,尚有许多情况需要讨论,首先引出完全四边形的例子,该关键词的应用非常普遍;其次,我们尝试用交比证明一些事实;随后我们又引出交比射影案例的特殊情况。原创 2024-01-22 19:29:48 · 3219 阅读 · 0 评论 -
【射影几何02-补】极点和极线,调和点列(01)
极点和极线(Pole and polar)对于几何学,是普遍的概念。可能高中就学过,问题是在双曲几何又用到这个概念。前面已经有写过一文,经过再次学习,逐渐感觉前文描述不很理想,这一文专门纠正前文的不足点。原创 2024-01-21 17:41:35 · 5299 阅读 · 0 评论 -
【射影几何09】交比定律和迪萨格定律
在射影几何中,映射不能保证线段长度一致,映射不能保证平行关系一致,映射不能角度的一致,也不能保证线段的比例关系一致,然而,能保证直线的一致,同时发现“交比”的一致性。进而,发现迪萨格定律。本文将围绕“交比”这个概念展开讨论。原创 2024-01-18 05:49:25 · 4369 阅读 · 0 评论 -
【射影几何08】仿射映射
简单来说,“仿射变换”就是:“线性变换”+“平移”,但这是在笛卡尔坐标下的表现,然而在射影几何中,其中有更合乎逻辑的解释。本文讲仿射映射的定义,以及仿射不变性的特点。原创 2023-05-07 15:48:32 · 5938 阅读 · 0 评论 -
【射影几何07】齐次坐标下的直线方程
简而言之,齐次坐标就是用N+1维来代表N维坐标。在图像处理领域,就是将三维场景投影到二维的屏上后,屏上的坐标点。因此,二维屏幕上的点既是屏上的真实点,但绝大多数点是场景内的点通过中心射影所得,因此需要包含三维的特征,故而多出一维来表述点坐标。原创 2022-04-04 20:38:34 · 6322 阅读 · 0 评论 -
【射影几何06】齐次坐标下“点-线”几何表示
本章主要演示,如何应用齐次坐标系表示点和直线。以及直线方程的齐次坐标表示。原创 2022-04-03 21:32:08 · 5931 阅读 · 0 评论 -
【射影几何05】齐次坐标系(Homogeneous coordinates)
本章建立射影几何的坐标系,如何建立坐标系?回答,建立坐标系方法不止一种,其中齐次坐标系是一种方法。原创 2022-04-01 09:24:03 · 7485 阅读 · 0 评论 -
射影几何笔记4:公理和证明
例 :设过点 S 的三直线分别交直线ξ与η于 A, B, C; A′, B′, C′. O 是直线ξ与η的交点.试证,四点 O , P = A B′× A′B, Q = A C′× A′C, R = B C′× B′C 共线.思路:观察S点和O点,将S和O向远处移动,命题同样成立。继续向远方移动S和O,移动到无穷远处,则图像如下:SA//SB//SC三线平行。同样线ABC//A'B'C',即两线也平行,因此,ABC和A'B'C'构成若干个平行四边形。而PQR是这些平行四边形的中心..原创 2022-02-25 15:56:14 · 5489 阅读 · 0 评论 -
【射影几何03】中心射影和透视射影
本篇叙述中心射影、透视射影的概念,其实中心射影就是透视射影的特殊情形。为了铺垫以后的三点论和四点论,的概念准备:射影映射(变换)前后,共线三点依然共线射影映射(变换)前后,共线四点的交比不变原创 2022-02-25 08:38:48 · 7397 阅读 · 0 评论 -
【射影几何01】 射影几何介绍
射影几何直接起源于透视法,而透视法是与绘画艺术分不开的.在中世纪,画家的主要任务是颂扬上帝和为圣经插图.但到了文艺复兴时期,描绘现实世界逐渐成为绘画的目标了.为了在画布上忠实地再现大自然,就需要解决一个数学问题:如何把三维的现实世界反映到二维的画布上.原创 2021-04-22 11:36:26 · 10900 阅读 · 2 评论 -
【射影几何02】拓广平面
本篇我们引入重要的射影几何概念,告诉大家在射影几何中,空间域是如何定义的。注意这种定义是逻辑的,或抽象的,然而不是不合理的,学习者需要习惯。原创 2021-05-21 15:12:29 · 5728 阅读 · 1 评论