
时间序列和数据分析
文章平均质量分 94
以数据挖掘为手段,对股票行业的数据进行规律性探讨。在学中用,在用中学,争取将数据发挥到极致。并且将人工智能的技术成为增进经济效益的手段,培养量化投资技术人才。
优惠券已抵扣
余额抵扣
还需支付
¥29.90
¥99.00
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
无水先生
擅长数学,能熟练应用泛函分析、统计学、随机过程、逼近论、微分几何、非欧几何(双曲、共形)等数学理论,有数学建模能力。从事图像处理二十年以上,从事人工智能行业10年以上;在船舶、通信、铁路、教育等行业开发软件产品。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【数据挖掘】时间序列教程【十】
对于时间序列的研究,可以追溯到19世纪末和20世纪初。当时,许多学者开始对时间相关的经济和社会现象进行研究,尝试发现其规律和趋势。其中最早的时间序列研究可以追溯到法国经济学家易贝尔(Maurice Allais)和英国经济学家詹姆斯·克拉克(James Clark)的研究。随着时间序列分析方法的不断发展和应用,时间序列研究逐渐成为了统计学、经济学、金融学、工程学等领域重要的研究方向。原创 2023-07-11 05:51:49 · 5729 阅读 · 0 评论 -
数据科学的统计基础
对于抽样是如何进行的?本篇介绍传统统计学原理。如:指出母体和抽样的关系。置信度、分布的特征,随机变量等概念。学习这些将有助于理解统计推断,进而学习贝叶斯推断。原创 2024-01-16 08:24:05 · 2826 阅读 · 0 评论 -
使用 Python 使用贝叶斯神经网络从理论到实践
在本文中,我们了解了如何构建一个机器学习模型,该模型结合了神经网络的强大功能,并且仍然保持概率方法进行预测。为了做到这一点,我们可以构建所谓的贝叶斯神经网络。原创 2023-12-15 10:19:40 · 5460 阅读 · 0 评论 -
【数据挖掘】时间序列教程【四】
对于时间序列的研究,可以追溯到19世纪末和20世纪初。当时,许多学者开始对时间相关的经济和社会现象进行研究,尝试发现其规律和趋势。其中最早的时间序列研究可以追溯到法国经济学家易贝尔(Maurice Allais)和英国经济学家詹姆斯·克拉克(James Clark)的研究。随着时间序列分析方法的不断发展和应用,时间序列研究逐渐成为了统计学、经济学、金融学、工程学等领域重要的研究方向。原创 2023-07-01 08:03:40 · 7532 阅读 · 0 评论 -
【数据挖掘】时间序列教程【五】
对于时间序列的研究,可以追溯到19世纪末和20世纪初。当时,许多学者开始对时间相关的经济和社会现象进行研究,尝试发现其规律和趋势。其中最早的时间序列研究可以追溯到法国经济学家易贝尔(Maurice Allais)和英国经济学家詹姆斯·克拉克(James Clark)的研究。随着时间序列分析方法的不断发展和应用,时间序列研究逐渐成为了统计学、经济学、金融学、工程学等领域重要的研究方向。原创 2023-07-02 12:20:40 · 7655 阅读 · 0 评论 -
【数据挖掘】时间序列教程【六】
对于时间序列的研究,可以追溯到19世纪末和20世纪初。当时,许多学者开始对时间相关的经济和社会现象进行研究,尝试发现其规律和趋势。其中最早的时间序列研究可以追溯到法国经济学家易贝尔(Maurice Allais)和英国经济学家詹姆斯·克拉克(James Clark)的研究。随着时间序列分析方法的不断发展和应用,时间序列研究逐渐成为了统计学、经济学、金融学、工程学等领域重要的研究方向。原创 2023-07-02 14:45:58 · 7273 阅读 · 0 评论 -
【数据挖掘】时间序列模型处理指南(一)
无论我们希望预测金融市场趋势还是电力消耗,时间都是我们的模型中必须考虑的重要因素。例如,预测电力消耗高峰的时间会很有趣。这对于调整电价或电力生产可能很有用。原创 2023-06-29 14:44:13 · 7972 阅读 · 0 评论 -
【数据挖掘】时间序列教程【八】
对于时间序列的研究,可以追溯到19世纪末和20世纪初。当时,许多学者开始对时间相关的经济和社会现象进行研究,尝试发现其规律和趋势。其中最早的时间序列研究可以追溯到法国经济学家易贝尔(Maurice Allais)和英国经济学家詹姆斯·克拉克(James Clark)的研究。随着时间序列分析方法的不断发展和应用,时间序列研究逐渐成为了统计学、经济学、金融学、工程学等领域重要的研究方向。原创 2023-07-04 15:07:56 · 7964 阅读 · 0 评论 -
大 O 表示法在机器学习中的重要性
在不断发展的机器学习领域,算法的效率至关重要。大 O 表示法成为这方面的一个关键工具,它提供了一种描述算法性能或复杂性的语言,特别是在时间和空间方面。本文探讨了 Big O 表示法在机器学习中的重要性,阐明了它在算法选择、优化和整体系统设计中的作用。原创 2023-12-16 06:11:00 · 4276 阅读 · 0 评论 -
使用有限差分法的欧式看跌期权的价值
本文是关于有限差分法的应用,是对于期货涨跌的分析案例。原创 2023-12-15 11:13:28 · 4411 阅读 · 0 评论 -
数据无效:问题和解决方案的分析
在数字时代,数据已成为企业、组织和个人的基本资源。然而,在浩瀚的数据海洋中,困扰数据分析的一个常见问题是存在空值或缺失数据。数据无效是指某些数据字段中缺少信息,这在根据该数据进行分析和决策时可能会导致重大问题。原创 2023-12-13 11:59:24 · 4026 阅读 · 0 评论 -
关于“如何处理稀疏数据集”的综合指南
您是否见过包含几乎所有 null 值的数据集?如果是这样,你就不是一个人了。机器学习中最常见的问题之一是稀疏数据集。有几个因素,如调查不充分、传感器数据缺失读数或文本缺失单词,都可能导致它们的存在。原创 2022-04-05 19:20:39 · 4656 阅读 · 0 评论 -
处理分类问题的不平衡数据的 5 种技术
如果您已经处理过分类问题,那么您一定遇到过以下情况:其中一个目标类标签的观察数明显低于其他类标签。这种类型的数据集称为不平衡类数据集,在实际分类场景中非常常见。解决此类机器学习问题的任何常用方法通常都会产生不适当的结果。原创 2023-11-26 09:41:44 · 3366 阅读 · 0 评论 -
特征工程完整指南 - 第一部分
特征工程是利用领域知识从原始数据中提取特征的过程。这些功能可用于提高机器学习算法的性能。本篇叙述在特征选择过程的若干数据处理。原创 2023-11-22 11:08:36 · 5325 阅读 · 0 评论 -
时间序列与 Statsmodels:预测所需的基本概念(1)
本博客解释了理解时间序列的基本概念:趋势、季节性、白噪声、平稳性,并使用自回归、差分和移动平均参数进行预测示例。这是理解任何时间序列数据的强制性步骤。原创 2023-11-21 00:08:07 · 5479 阅读 · 2 评论 -
时间序列与 statsmodels:预测所需的基本概念(2)
在使时间序列平稳后,在本博客中我们应用 SARIMAX 预测并进行深入解释。原创 2023-11-19 14:46:35 · 5413 阅读 · 0 评论 -
自动 ARIMA 超参数搜索
在这篇博客中,我将介绍自动搜索 (S)ARIMA 预测模型关键参数的方法。我们将在 (S)ARIMA 预测模型中调整的超参数是季节性参数 (S)、自回归参数 (AR)、差分参数 (I) 和移动平均值 (MA)。如果需要,您可以在我之前的博客中阅读有关此参数的更多信息原创 2023-11-19 14:41:22 · 5575 阅读 · 0 评论 -
卡尔曼滤波器第 2 部分 - 贝叶斯滤波器
这是卡尔曼滤波器系列的第二部分,我们在概念和代码方面对卡尔曼滤波器进行了基于示例的理解。在第一部分中,我们对卡尔曼滤波器有了直观的理解,然后是基于数值的 Alpha-Beta 滤波器(构成卡尔曼滤波器的基础)的正式示例。原创 2023-11-15 11:44:37 · 5345 阅读 · 0 评论 -
优化奥德赛:揭开训练人工神经网络的本质
近年来,人工智能领域取得了显著的进步,而这场革命的核心是训练人工神经网络 (ANN) 的复杂过程。这些网络受到人脑的启发,能够从数据中学习复杂的模式和表示。人工神经网络成功的核心是认识到训练它们从根本上是一个优化问题。本文探讨了这一优化之旅的细微差别,深入探讨了定义人工神经网络训练前景的关键概念、挑战和进步。原创 2023-11-15 10:35:35 · 5301 阅读 · 0 评论 -
机器学习中的偏差漂移:挑战与缓解
机器学习算法已在各个行业得到广泛采用,在自动化流程、制定数据驱动决策和提高效率方面发挥着关键作用。然而,他们也面临着挑战,其中一个重要的问题是偏见。机器学习模型中的偏差可能会导致不公平和歧视性的结果,并对现实世界产生影响。偏差的一个特别具有挑战性的方面是“偏差漂移”,即模型的行为随着时间的推移而变化。在本文中,我们将探讨偏差漂移的概念、其原因、后果以及缓解偏差的策略。原创 2023-11-15 10:32:15 · 5597 阅读 · 0 评论 -
完全随机设计的方差分析
实验设计在科学研究中发挥着至关重要的作用,使研究人员能够从数据中得出有意义的结论。一种常见的实验设计是完全随机设计(CRD),其特征是将实验单元随机分配到治疗组。CRD 的方差分析 (ANOVA) 是一种统计技术,用于确定治疗组之间是否存在统计显着差异。在本文中,我们将探讨 CRD 方差分析的基本原理、其假设及其在现实世界研究中的应用。原创 2023-11-15 10:25:22 · 5763 阅读 · 0 评论 -
了解指数加权移动平均线 (EWMA)
指数加权移动平均线 (EWMA) 是一种用于数据分析的统计方法,特别是在时间序列预测和财务建模中。它提供了一种强大而灵活的方式来理解和预测趋势,在历史数据和最新数据之间提供平衡,使分析师能够适应随时间变化的模式。本文将深入探讨 EWMA 的概念、其数学公式、实际应用以及它在各个领域提供的优势。原创 2023-11-15 09:17:55 · 6379 阅读 · 2 评论 -
时间序列预测:移动平均线、指数平滑和 SARIMA
在我的上一篇文章中,我们介绍了用于数据分析和清理的不同技术,以准备用于预测的数据。在完成数据的分析和提炼后,我们成功实现了获得不存在任何缺失值、异常值或其他异常的原始数据集的目标。原创 2023-11-15 09:14:07 · 5648 阅读 · 0 评论 -
如何处理数据集内的缺失值?
也许数据科学或机器学习问题研究中要求最高的阶段是数据预处理阶段,其目的是最终创建有用的数据集。如果说处理很酷的机器学习模型是阿喀琉斯的热门,那么数据预处理就是被诅咒的西西弗斯。原创 2023-11-09 00:51:17 · 5666 阅读 · 0 评论 -
标签识别中的数据泄露:关键分析
在数据驱动的决策时代,收集、处理和分析数据的过程在从医疗保健到金融,从营销到研究的各个领域都发挥着举足轻重的作用。数据分析的基本步骤之一是正确识别数据集中的标签或类别。然而,这项看似简单的任务可能充满挑战,尤其是在发生数据泄漏时。标签识别中的数据泄露可能会产生深远的影响,影响数据分析的可靠性和完整性。本文探讨了标签识别中数据泄漏的概念、原因、后果以及减轻其影响的策略。原创 2023-11-05 14:53:24 · 5567 阅读 · 0 评论 -
时间序列聚类的直观方法
在本文中,我们研究了如何使用欧几里德距离和相关性度量来执行时间序列聚类,并且我们还观察了这两种情况下结果的变化。如果我们在评估聚类时结合 Silhouette,我们可以使聚类步骤更加客观,因为它提供了一种很好的直观方法来查看聚类的分离程度。原创 2023-11-04 01:27:29 · 6182 阅读 · 4 评论 -
【经典PageRank 】02/2 算法和线性代数
该算法由 Sergey 和 Lawrence 开发,用于在 Google 搜索中对网页进行排名。基本原则是重要或值得信赖的网页更有可能链接到其他重要网页。例如,来自信誉良好的网站的链接比来自不太知名的博客的链接具有更大的权重。特征向量在理解 PageRank 算法的理论中发挥着基础作用。PageRank 和特征向量之间的联系可以在马尔可夫链或计算图及其稳态行为的背景下得到最好的理解。原创 2023-10-22 08:25:47 · 6287 阅读 · 0 评论 -
【经典 PageRank 】01/2 PageRank的基本原理
PageRank是Google搜索算法中使用的一种算法,用于确定页面的重要性和排名。 它是通过对网页间的链接关系进行评估来计算的,具有较高的链接权重的网页将获得较高的PageRank值。 PageRank是一个0到10的指标,其中10是最高级别,表示网页是高质量,受欢迎且有价值的。虽然Google对PageRank的重要性逐渐下降,但它仍然是搜索引擎排名因素之一,特别是在SEO优化领域中。原创 2023-10-22 08:13:30 · 5905 阅读 · 0 评论 -
股票交易中的卡尔曼滤波器
将卡尔曼滤波用在股市预测,是一个高水平的数学模型。其中首先要吃透啥叫卡尔曼滤波,然后才能应用到股市。股市数据最大的看点在于,诱因太多,以至于不可测。有随机性,但不属于任何分布。有时一段看似平稳过程,但突然之间跌宕起伏。属于数据中最难驾驭的,构成一种挑战。本文论述如何使用卡尔曼分解股市要素。原创 2023-10-21 12:24:30 · 6116 阅读 · 4 评论 -
正确完成实时 AI
我们知道,当前的AI进展是扎根于历史数据,这就造成一个事实,模型总是赶不上实时进展,模型的洞察力不够尖锐,或者,时间损失等,本篇对这一系列AI的短板展开议论。原创 2023-10-03 10:22:34 · 5442 阅读 · 0 评论 -
神经网络期权对冲
如何使用蒙特卡洛和神经网络对冲期权?该项目分为两个步骤:准蒙特卡洛(Sobol)的高级蒙特卡洛技术,用于股票的路径模拟。在我们计算期权在时间 T 的收益后。我们如何创建一个复制的投资组合策略,以在t=0时对期权进行估值。原创 2023-10-03 06:31:49 · 5598 阅读 · 0 评论 -
傅里叶系列 P2 的定价选项
通过本文,您可以了解:如何从知道什么是傅里叶级数到能够在黑色下为期权定价。原创 2023-10-03 06:03:24 · 5338 阅读 · 0 评论 -
傅里叶系列 P1 的定价选项
这是第一篇文章,我将帮助您获得如何使用这个新的强大工具来解决金融中的半分析问题并取代您的蒙特卡洛方法的直觉。原创 2023-10-03 05:23:12 · 5802 阅读 · 0 评论 -
【精算研究02/10】 风险的损失分布方法 (LDA 上)浅述
损失分配法(loss distribution approach)是风险管理从业者采用的一种常用方法,用于识别和评估他们在正常业务过程中可能面临的可能风险。损失分配方法实际上是由保险行业的精算师设计的。正是由于这个原因,该技术在数学上是先进的,因此本质上很复杂。在现代世界,损失分配法已成为国际清算银行(BIS)在巴塞尔规范中规定的高级计量方法的组成部分。在本文中,我们将仔细研究实施损失分配方法时需要遵循的分步过程。原创 2023-09-12 19:45:18 · 6019 阅读 · 0 评论 -
【量化分析】Python 布林线( Bollinger)概念
布林线(BOLL),Bollinger Bands,利用统计原理,求出股价的标准差及其信赖区间,从而确定股价的波动范围及未来走势,利用波带显示股价的安全高低价位,因而也被称为布林带。原创 2023-09-11 19:12:27 · 6305 阅读 · 0 评论 -
Python 交易指南:利用 RSI
RSI是相对强弱指数(Relative Strength Index)的缩写,是一种技术指标。该指标是用来测量股票或其他交易品种的价格波动强度和速度的,属于动量型指标。RSI常用于技术分析和交易策略中,可以帮助交易者判断市场的买卖力量、价格趋势和超买超卖状况,从而制定有效的交易决策。原创 2023-09-10 16:31:29 · 5994 阅读 · 1 评论 -
随机游走任务中时间差分(0)和常数α蒙特卡罗方法的比较
在这篇文章中,我们讨论了常α MC 方法和 TD(0) 方法之间的区别,并比较了它们在随机游走任务中的性能。TD方法在本文的所有测试中都覆盖了MC方法,因此将TD视为强化学习任务的方法是更可取的选择。原创 2023-09-02 08:48:03 · 5476 阅读 · 0 评论 -
使用实体解析和图形神经网络进行欺诈检测
对于金融、电子商务和其他相关行业来说,在线欺诈是一个日益严重的问题。为了应对这种威胁,组织使用基于机器学习和行为分析的欺诈检测机制。这些技术能够实时检测异常模式、异常行为和欺诈活动。原创 2023-08-27 15:32:25 · 7242 阅读 · 1 评论 -
熊猫:完整的初学者指南
在你的Python开发人员或数据科学之旅中,你可能已经多次遇到“熊猫”这个词,但仍然需要弄清楚它的作用。以及数据和熊猫之间的关系。所以让我向你解释一下。根据最新估计,每天创建 328.77 亿 TB 的数据。 现在是我们利用如此大量的数据来产生见解并预测当前和未来结果的时候了,因此pandas不能不修。原创 2023-08-26 08:19:55 · 5393 阅读 · 0 评论 -
股票预测和使用LSTM(长期-短期-记忆)的预测
准确预测股市走势长期以来一直是投资者和交易员难以实现的目标。虽然多年来出现了无数的策略和模型,但有一种方法最近因其能够捕获历史数据中的复杂模式和依赖关系而获得了显着的关注:长短期记忆(LSTM)。利用深度学习的力量,LSTM 提供了一种很有前途的途径,可以深入了解股票市场的不可预测性。在本文中,我们将深入研究基于LSTM的股票市场预测领域,并探讨这种创新方法如何有可能改变投资策略。原创 2023-08-23 15:46:46 · 8031 阅读 · 0 评论