通用双曲几何
文章平均质量分 95
对通常的罗巴切夫斯基几何进行系统学习和笔记。对系统概念进行详细阐述。学习后能深刻理解其人工智能、NLP用途、以及及酷炫的共形几何作图算法。
无水先生
擅长数学,能熟练应用泛函分析、统计学、随机过程、逼近论、微分几何、非欧几何(双曲、共形)等数学理论,有数学建模能力。从事图像处理二十年以上,从事人工智能行业10年以上;在船舶、通信、铁路、教育等行业开发软件产品。
展开
-
【庞加莱几何-02】反演定理和证明
这里是庞加莱几何的第二篇文章,是庞加莱基本几何属性的研究。本篇主要说清楚,什么是反演,在反演情况下,圆和直线的变换结果。也预先告诉大家,在艺术作图中,反射比反演更常见。除此,还涉及几个定理的证明。几何原创 2024-06-08 18:15:28 · 2637 阅读 · 0 评论 -
【庞加莱几何-01】从第五公理开始
庞加莱几何虽然也是双曲几何,但是有一些公理是独特的。本篇将开始梳理庞加莱几何的公理体系,将隐含的定理和属性挖掘出来。原创 2024-05-18 00:05:35 · 2234 阅读 · 0 评论 -
【双曲几何-05 庞加莱模型】庞加来上半平面模型的几何属性
庞加莱圆盘模型是表示双曲几何的一种方法,对于大多数用途来说它都非常适合几何作图。然而,另一种模型,称为上半平面模型,使一些计算变得更容易,包括三角形面积的计算。原创 2024-05-06 16:55:36 · 2901 阅读 · 3 评论 -
【莫比乌斯变换-03】python实现圆对圆的变换
我们在前面的文章中,叙述了莫比乌斯变换的复数分析,以及种种几何属性,本篇中叙述如何程序地实现:复平面上的圆在莫比乌斯变换下的图像是另一个圆。为了使这一点始终成立,您必须将一条线作为圆的特例,如果您愿意,可以是无限半径的圆。原创 2024-05-05 09:45:37 · 2073 阅读 · 1 评论 -
【莫比乌斯变换-02】关于莫比乌斯变换属性梳理
莫比乌斯变换在非欧几何中有及其重要的地位,而莫比乌斯变换是抽象的, 不是一眼就能识别出其特征。本篇将继续梳理它的种种特性。并给出艺术数学的文献查询地址。原创 2024-05-04 12:56:01 · 2538 阅读 · 1 评论 -
【莫比乌斯变换-01】莫比乌斯变换的数学原理
关于莫比乌斯变换,是一个代数几何变换的重要概念。也是双曲几何的重要理论,比如庞加莱盘就是建立在这个理论上,那么这个变换到底有哪些内容?本文将做出详细的解读。原创 2024-05-03 03:19:45 · 2978 阅读 · 0 评论 -
【双曲几何】圆盘上的三角形概念
本文对双曲空间的三角形进行分析,本篇首先给出,参考圆内外的点映射,进而说明三角形形状的反演映射关系。进而给出正交三角图和射影中心的概念。我i们常常提到庞加莱盘的概念,但是深入探讨的时候,本篇是一些基本常识。原创 2024-04-20 22:13:00 · 2342 阅读 · 0 评论 -
【射影几何15】python双曲几何工具geometry_tools
Geometry_tools 是一个 Python 包,旨在帮助您处理和可视化双曲空间和射影空间上的群动作。原创 2024-02-10 17:20:21 · 2580 阅读 · 0 评论 -
【射影几何02-补】极点和极线,调和点列(01)
极点和极线(Pole and polar)对于几何学,是普遍的概念。可能高中就学过,问题是在双曲几何又用到这个概念。前面已经有写过一文,经过再次学习,逐渐感觉前文描述不很理想,这一文专门纠正前文的不足点。原创 2024-01-21 17:41:35 · 3363 阅读 · 0 评论 -
【双曲几何学 02】什么是极点和极线?
Pole and polar 对于几何学,是普遍的概念。可能高中就学过,问题是在双曲几何又用到这个概念,因此,这里再次强调理解这个概念。为后边学习双曲几何扫清障碍。原创 2023-06-16 17:58:45 · 18303 阅读 · 0 评论
分享