贝叶斯理论
文章平均质量分 95
收集关于贝叶斯推理的统计学理论。
无水先生
擅长数学,能熟练应用泛函分析、统计学、随机过程、逼近论、微分几何、非欧几何(双曲、共形)等数学理论,有数学建模能力。从事图像处理二十年以上,从事人工智能行业10年以上;在船舶、通信、铁路、教育等行业开发软件产品。
展开
-
贝叶斯推理:分步指南
让我们深入了解贝叶斯推理的迷人世界。我将通过易于遵循的示例向您介绍其实际应用。 贝叶斯推理为统计分析提供了一个强大而灵活的框架,特别是在存在不确定性和先验知识的情况下。通过结合先前的分布并使用贝叶斯定理根据新证据更新这些信念,贝叶斯方法使我们能够对未知参数做出更明智和细致的推断。原创 2024-08-19 07:58:55 · 1827 阅读 · 0 评论 -
面向数据科学家的实用贝叶斯推理
Bayesian Inference 是一种方便的统计方法,可帮助数据科学家在新数据或信息可用时更新假设的可能性。基于贝叶斯定理,它为进行概率预测提供了一个强大的框架,通常用于机器学习、人工智能和数据分析等领域。原创 2024-08-09 07:30:50 · 1587 阅读 · 0 评论 -
朴素贝叶斯机器学习算法:从基础到高级
在测试阶段,该算法根据观察到的特征值检索相应的概率,将它们相乘,并提供最终输出,指示预测的类别。无平滑 (alpha = 0):在没有任何平滑的情况下,如果我们遇到一封新电子邮件,其中包含训练数据中未看到的特征值,则其概率将为零。给定特定的天气条件,例如天气 = 晴天,温度 = 凉爽,湿度 = 正常,大风 = 真,我们想预测这个条件穿过可可西里的可能性。我们用一个简单的示例,我们假如要提取出天气对翻越可可西里无人区的影响,提取出气候影响的模型,便可预测任意天气下,考察对穿越可可西里的可能性预测。原创 2024-06-19 22:46:20 · 1886 阅读 · 0 评论 -
【高级机器学习理论】变分推理
我们生活在量化的时代。但严格的量化说起来容易做起来难。在生物学等复杂系统中,收集数据可能既困难又昂贵。在医学和金融等高风险应用中,考虑不确定性至关重要。变分推理——人工智能研究前沿的一种方法——是解决这些问题的一种方法。原创 2024-05-22 00:10:33 · 2219 阅读 · 0 评论 -
贝叶斯变分方法:初学者指南--平均场近似
变分贝叶斯 (VB) 方法是统计机器学习中非常流行的一系列技术。VB 方法允许我们将统计推断问题(即,给定另一个随机变量的值来推断随机变量的值)重写为优化问题(即,找到最小化某些目标函数的参数值),本文将阐述这种精妙模型。原创 2023-10-30 00:21:50 · 2607 阅读 · 0 评论 -
【贝叶斯回归】【第 2 部分】--推理算法
在第一部分中,我们研究了如何使用 SVI 对简单的贝叶斯线性回归模型进行推理。在本教程中,我们将探索更具表现力的指南以及精确的推理技术。我们将使用与之前相同的数据集。原创 2023-10-29 10:40:58 · 3694 阅读 · 1 评论 -
贝叶斯优化分步指南:基于 Python 的方法
对于存在隐含变量的模型,有卡尔曼、隐马尔可夫、混合高斯模型、EM算法,这些模型都是建立在一种理论,贝叶斯推断理论,本篇讲授典型的贝叶斯推断原理。原创 2023-10-25 19:15:53 · 2822 阅读 · 3 评论 -
【深度学习】关于贝叶斯神经网络你应该知道的 8 个术语
在上一篇文章中,我们介绍了贝叶斯神经网络(BNN)。对于那些不熟悉BNN的人,请确保您已检查下面的链接,以便熟悉标准神经网络(SNN)和BNN之间的区别。原创 2023-07-21 06:52:57 · 3797 阅读 · 4 评论 -
回到未来:使用马尔可夫转移矩阵分析时间序列数据
在本文中,我们将研究使用马尔可夫转移矩阵重构时间序列数据如何产生有趣的描述性见解以及用于预测、回溯和收敛分析的优雅方法。在时间上来回走动——就像科幻经典《回到未来》中 Doc 改装的 DeLorean 时间机器一样。原创 2023-08-18 20:41:39 · 4197 阅读 · 2 评论 -
【基础理论】概率关系的反直觉本质
在回归分析中,如果 y 可以估计为 x 的线性函数并不意味着 x 也可以估计为y的线性函数。如果我们总是根据父亲的身高知道儿子身高的最佳猜测,那么我们对父亲基于儿子身高的猜测会是什么?这真的是难题,本文详细呈述这种问题。原创 2023-07-22 10:55:17 · 3281 阅读 · 0 评论 -
描述性统计:集中趋势和分散
在本文中,我们将深入研究描述性统计领域,探索其不同方面,包括统计类型、总体与样本、参数与统计、数据类型以及集中趋势和离散的度量。原创 2023-08-18 13:26:39 · 3563 阅读 · 0 评论
分享