傅里叶分析
文章平均质量分 95
该专栏专门收集频域变换和应用。
无水先生
擅长数学,能熟练应用泛函分析、统计学、随机过程、逼近论、微分几何、非欧几何(双曲、共形)等数学理论,有数学建模能力。从事图像处理二十年以上,从事人工智能行业10年以上;在船舶、通信、铁路、教育等行业开发软件产品。
展开
-
FFT快速傅里叶变换音频分析
我们使用 Arduino 板来训练音频和运动数据。正如你所猜到的,训练模型的关键部分是特征提取。多亏了Edge Impulse,我不需要在项目期间提取特征。Edge Impulse 有一个用于自动分析数据的平台,它可以为模型选择正确的特征。它将音频数据转换为 FFT 和 PDS。原创 2024-04-19 04:30:12 · 1784 阅读 · 0 评论 -
s2fft库介绍:可微分和加速球谐变换
科学和工程的许多领域都会遇到在球体上定义的数据。对此类数据进行建模和分析通常需要傅里叶变换的球面对应物,即球面谐波变换。我们简要概述了球谐变换,并提出了一种新的可微分算法,该算法专为GPU上的加速而定制[1]。原创 2024-03-18 14:41:12 · 2410 阅读 · 0 评论 -
图像理论:适应性形态重建
在数字图像处理领域,自适应形态重建(Adaptive Morphological Reconstruction- AMR)成为一种强大的技术,可以完善和增强形态操作的能力,以适应图像的独特特征。本文深入探讨了抗微生物药物耐药性的基本概念、其机制、应用以及它对从医学成像到遥感等各个领域的深远影响。原创 2024-03-13 09:39:06 · 2445 阅读 · 0 评论 -
傅立叶之美:深入研究傅里叶分析背后的原理和数学
T傅里叶级数及其伴随的推导是数学在现实世界中最迷人的应用之一。我一直主张通过理解数学来理解我们周围的世界。从使用线性代数设计神经网络,从混沌理论理解太阳系,到弦理论理解宇宙的基本组成部分,数学无处不在。原创 2024-03-13 00:17:31 · 3794 阅读 · 3 评论 -
基于相位的运动放大:如何检测和放大难以察觉的运动(01/2)
当我第一次接触到运动放大时,我很惊讶,移动不到一个像素的东西怎么会有运动放大?没错,我们实际上可以检测和放大静态视频中难以察觉的运动,而且我们可以在不放大噪音的情况下做到这一点!这个概念有很多应用,并且已经在多个行业中使用。例如,结构和设备并不总是容易安装传感器。可靠的视觉技术可以成为快速识别和诊断问题的有效方法,这提供了低成本的结构分析。原创 2024-02-25 17:53:54 · 3600 阅读 · 4 评论 -
傅里叶变换及其在机器学习中的应用
傅立叶变换是一种数学技术,在各个科学和工程领域发挥着关键作用,其应用范围从信号处理到量子力学。近年来,它在机器学习领域发现了新的意义。本文探讨了傅里叶变换的基础知识及其在机器学习应用中日益增长的重要性。原创 2023-11-29 11:16:26 · 3416 阅读 · 1 评论 -
协调信号:利用 FFT 的强大功能来解码波形文件
我已经很长时间没有编程了,但我从来没有机会读取二进制文件。我主要处理涉及文本数据的文件。上个月,我决定研究一个特定的二进制文件以产生一些有趣的东西。作为团队的一部分,我们有这个小型项目的前端和后端。原创 2023-09-26 20:01:45 · 2557 阅读 · 0 评论 -
傅里叶变换应用 (02/2):频域和相位
到目前为止,在我们的讨论中,我已经交替使用了“傅里叶变换”和“快速傅里叶变换(FFT)”。在这一点上,值得注意的是区别!FFT 是“离散”傅里叶变换 (DFT) 的有效算法实现。“离散”表示我们可以将变换应用于一系列点,而不是完整的连续信号。在数据科学应用中,我们通常有一组样本,而不是一个连续的输入函数,所以我们通常对DFT感兴趣!原创 2023-09-17 15:18:43 · 3107 阅读 · 1 评论 -
傅里叶变换应用 (01/2):频域和相位
我努力理解傅里叶变换,直到我将这个概念映射到现实世界的直觉上。这是一系列技术性越来越强的解释中的第一篇文章。我希望直觉也能帮助你!原创 2023-09-17 07:28:25 · 5611 阅读 · 0 评论 -
基本概念 I 和 Q:I/Q 数据的基础知识
I/Q 值是指两个复数分量,即正交振幅分量 In-phase (I) 和 Quadrature (Q)。I/Q 值在无线通信系统中广泛使用,尤其在数字信号处理领域中。在数字信号接收机中,接收到的无线电波信号经过变频后,转换为 I/Q 值,然后对其进行数字信号处理。I/Q 值也用于确定信号的相位和幅度,因此在无线电通信和雷达系统中也广泛使用。原创 2023-09-17 13:57:55 · 10787 阅读 · 1 评论
分享