TensorFlow_2.14
文章平均质量分 95
无水先生
擅长数学,能熟练应用泛函分析、统计学、随机过程、逼近论、微分几何、非欧几何(双曲、共形)等数学理论,有数学建模能力。从事图像处理二十年以上,从事人工智能行业10年以上;在船舶、通信、铁路、教育等行业开发软件产品。
展开
-
【TensorFlow2 之011】TF 如何使用数据增强提高模型性能?
亮点:在这篇文章中,我们将展示数据增强技术作为提高模型性能的一种方式的好处。当我们没有足够的数据可供使用时,这种方法将非常有益。原创 2023-10-12 10:21:49 · 3704 阅读 · 0 评论 -
图神经网络并在 TensorFlow 中实现
本文将引导您了解图神经网络 (GNN) 并使用 TensorFlow 实现该网络。在后续的文章中,我们讨论 GNN 的不同变体及其实现。原创 2023-12-20 08:52:24 · 2832 阅读 · 1 评论 -
深度学习回顾:七种网络
本文 揭开CNN、Seq2Seq、Faster R-CNN 和 PPO ,以及transformer和humg-face— 编码和创新之路。对于此类编程的短小示例,用于对照观察,或做学习实验。原创 2023-11-28 00:43:07 · 2864 阅读 · 0 评论 -
在 TensorFlow 中调试
在这篇文章中,我想谈谈 TensorFlow 中的调试。在之前的一些帖子(此处、此处和此处)中,我向您介绍了我在 Mobileye(正式称为 Mobileye,英特尔公司)的团队如何使用TensorFlow、Amazon SageMaker和Amazon s3来训练我们的基于大量数据的深度神经网络。原创 2023-10-13 08:25:12 · 2985 阅读 · 0 评论 -
【TensorFlow2 之012】TF2.0 中的 TF 迁移学习
在这篇文章中,我们将展示如何在不从头开始构建计算机视觉模型的情况下构建它。迁移学习背后的想法是,在大型数据集上训练的神经网络可以将其知识应用于以前从未见过的数据集。也就是说,为什么它被称为迁移学习;我们将现有模型的学习转移到新的数据集中。原创 2023-10-12 09:51:30 · 3246 阅读 · 0 评论 -
【TensorFlow2 之013】TensorFlow-Lite
在这篇文章中,我们将展示如何构建计算机视觉模型并准备将其部署在移动和嵌入式设备上。有了这些知识,您就可以真正将脚本部署到日常使用或移动应用程序中。原创 2023-10-11 13:54:38 · 2911 阅读 · 0 评论 -
【TensorFlow2 之015】 在 TF 2.0 中实现 AlexNet
在这篇文章中,我们将展示如何在 TensorFlow 2.0 中实现基本的卷积神经网络 \(AlexNet\)。AlexNet 架构由 Alex Krizhevsky 设计,并与 Ilya Sutskever 和 Geoffrey Hinton 一起发布。并获得Image Net2012竞赛中冠军。原创 2023-10-12 10:34:05 · 3642 阅读 · 0 评论 -
Xception:使用Tensorflow从头开始实现
近年来,卷积神经网络已成为计算机视觉领域的主要算法,开发设计它们的方法一直是相当的关注。Inception模型似乎能够用更少的参数学习更丰富的表示。它们是如何工作的,以及它们与常规卷积有何不同?本文将用tensorflow实现,用具体实践展现它的结构。原创 2023-10-10 11:11:24 · 3426 阅读 · 0 评论 -
【使用 TensorFlow 2】02/3 使用 Lambda 层创建自定义激活函数
TensorFlow 2发布已经接近2年时间,不仅继承了Keras快速上手和易于使用的特性,同时还扩展了原有Keras所不支持的分布式训练的特性。3大设计原则:简化概念,海纳百川,构建生态.这是本系列的第三部分,我们将创建激活层并在 TensorFlow 2 中训练它们。原创 2023-10-10 10:51:21 · 2819 阅读 · 0 评论 -
【使用 TensorFlow 2】03/3 创建自定义损失函数
TensorFlow 2发布已经接近5年时间,不仅继承了Keras快速上手和易于使用的特性,同时还扩展了原有Keras所不支持的分布式训练的特性。3大设计原则:简化概念,海纳百川,构建生态.这是本系列的第三部分,我们将创建代价函数并在 TensorFlow 2 中使用它们。原创 2023-10-10 10:57:28 · 5019 阅读 · 0 评论 -
【使用 TensorFlow 2】01/3 中创建和训练自定义层
TensorFlow 2发布已经接近2年时间,不仅继承了Keras快速上手和易于使用的特性,同时还扩展了原有Keras所不支持的分布式训练的特性。3大设计原则:简化概念,海纳百川,构建生态.这是本系列的第三部分,我们将创建自定义密集层并在 TensorFlow 2 中训练它们。原创 2023-10-10 09:52:57 · 3219 阅读 · 0 评论 -
【TensorFlow Hub】:有 100 个预训练模型等你用
TensorFlow Hub是一个库,用于在TensorFlow中发布,发现和使用可重用模型。它提供了一种使用预训练模型执行各种任务(如图像分类、文本分析等)的简单方法。TensorFlow Hub提供了广泛的预训练模型,由TensorFlow和更广泛的机器学习社区的研究人员和工程师开发。原创 2023-10-06 14:04:59 · 5414 阅读 · 1 评论
分享