机器学习专栏
文章平均质量分 94
本栏目是配合教学使用的导学案。其中最大优势在于系统阐述人工智能的相关数学理论,以及相关的python实现。读者读后具有完整知识体系和从业能力。
无水先生
擅长数学,能熟练应用泛函分析、统计学、随机过程、逼近论、微分几何、非欧几何(双曲、共形)等数学理论,有数学建模能力。从事图像处理二十年以上,从事人工智能行业10年以上;在船舶、通信、铁路、教育等行业开发软件产品。
展开
-
ML 系列: 第 24 节 — 离散概率分布(泊松分布)
泊松概率分布是一种离散概率分布,它表示在固定的时间或空间间隔内发生给定数量的事件的概率,前提是这些事件以已知的恒定平均速率发生,并且与自上次事件以来的时间无关。此分布对于对罕见事件进行建模特别有用。原创 2024-11-13 12:39:26 · 269 阅读 · 0 评论 -
ML 系列: 第 23 节 — 离散概率分布 (多项式分布)
在机器学习系列的第23节,我们探索了多项式分布,了解了它在多次试验中具有多种结果的场景中的应用。原创 2024-11-12 21:11:01 · 817 阅读 · 0 评论 -
ML 系列: 第 22 节 — 离散概率分布 (Multinoulli Distribution)
多重努利分布,也称为分类分布或伯努利分布对多个类别的泛化,是在随机变量上定义的概率分布函数,该变量可以采用k 个不同值之一。每个值代表不同的类别或结果,与每个类别关联的概率之和必须为1。原创 2024-11-09 16:24:19 · 940 阅读 · 0 评论 -
ML 系列:第 21 节 — 离散概率分布(二项分布)
二项分布描述了在固定数量的独立伯努利试验中一定数量的成功的概率,其中每个试验只有两种可能的结果(通常标记为成功和失败)。原创 2024-11-09 16:11:35 · 784 阅读 · 0 评论 -
ML 系列:机器学习和深度学习的深层次总结( 20)— 离散概率分布 (Bernoulli 分布)
离散概率分布,最早的杰出任务是贝努力,而贝努力分布是最早的离散概率模型,至今依然是重要的概率理论,在物理学的热力学、量子理论均有巨大意义。原创 2024-11-06 21:22:21 · 974 阅读 · 0 评论 -
ML 系列:机器学习和深度学习的深层次总结( 19)— PMF、PDF、平均值、方差、标准差
在概率和统计学中,了解结果是如何量化的至关重要。概率质量函数 (PMF) 和概率密度函数 (PDF)是实现此目的的基本工具,每个函数都提供不同类型的数据:离散和连续数据。原创 2024-11-06 21:12:53 · 1363 阅读 · 0 评论 -
ML 系列:机器学习和深度学习的深层次总结(17)从样本空间到概率规则概率
概率是支撑大部分统计分析的基本概念。从本质上讲,概率提供了一个框架,用于量化不确定性并对未来事件做出明智的预测。无论您是在掷骰子、预测天气还是评估金融市场的风险,概率都是帮助您驾驭不确定性的工具。本篇将讲授概率的原理和可操作性。原创 2024-10-24 09:39:45 · 1042 阅读 · 0 评论 -
决策树回归器,解释:包含代码示例的可视化
决策树不仅限于对数据进行分类 — 它们同样擅长预测数值!分类树经常成为人们关注的焦点,但决策树回归器(或回归树)是连续变量预测领域中功能强大且用途广泛的工具。原创 2024-10-15 20:55:07 · 592 阅读 · 0 评论 -
40 个数据科学统计面试常见问题
作为人工智能的工程师,必须明白基本的数学应用,面试的时候难免也会遇到这些提问,那么提问者如何设计面试问题,遇到这些问题如何回答,本篇搜集了统计相关的四十个问题,供大家参考。原创 2024-10-10 10:10:56 · 1837 阅读 · 0 评论 -
使用两种不同的方法估计几何布朗运动随机过程的参数
称为几何布朗运动(又名随机游走)的随机过程是最常见和最普遍使用的过程,因为它简单且应用广泛。在本文中,我将展示如何使用两种不同的方法估计几何布朗运动过程的参数。原创 2024-07-23 20:21:05 · 1819 阅读 · 0 评论 -
【高级机器学习理论】变分推理
我们生活在量化的时代。但严格的量化说起来容易做起来难。在生物学等复杂系统中,收集数据可能既困难又昂贵。在医学和金融等高风险应用中,考虑不确定性至关重要。变分推理——人工智能研究前沿的一种方法——是解决这些问题的一种方法。原创 2024-05-22 00:10:33 · 2219 阅读 · 0 评论 -
扩散模型会成为深度学习的下一个前沿领域吗?
谷歌的 AlphaFold 3 因其彻底改变生物技术的潜力而受到广泛关注。与以前的方法相比,导致其性能提升的关键创新之一是它利用了扩散模型。AlphaFold 3 的功能来自其下一代架构和训练,现在涵盖了所有生命分子。该模型的核心是我们的 Evoformer 模块的改进版本——一种深度学习架构,支撑了 AlphaFold 2 令人难以置信的性能。在处理输入后,AlphaFold 3 使用扩散网络组装其预测,类似于 AI 图像生成器中的预测。扩散过程从一团原子开始,经过许多步骤,汇聚到其最终的、最准确的分子结原创 2024-06-06 05:18:05 · 3577 阅读 · 1 评论 -
FifthOne:计算机视觉提示和技巧
欢迎来到我们每周的FiftyOne提示和技巧博客,我们回顾了最近在Slack,GitHub,Stack Overflow和Reddit上弹出的问题和答案。FiftyOne是一个开源机器学习工具集,使数据科学团队能够通过帮助他们策划高质量数据集、评估模型、查找错误、可视化嵌入。原创 2023-08-19 13:40:37 · 4770 阅读 · 0 评论 -
【数据挖掘】时间序列教程【一】
对于时间序列的研究,可以追溯到19世纪末和20世纪初。当时,许多学者开始对时间相关的经济和社会现象进行研究,尝试发现其规律和趋势。其中最早的时间序列研究可以追溯到法国经济学家易贝尔(Maurice Allais)和英国经济学家詹姆斯·克拉克(James Clark)的研究。随着时间序列分析方法的不断发展和应用,时间序列研究逐渐成为了统计学、经济学、金融学、工程学等领域重要的研究方向。原创 2023-06-30 09:29:57 · 8924 阅读 · 1 评论 -
【深度学习所有损失函数】在 NumPy、TensorFlow 和 PyTorch 中实现(2/2)
在本文中,讨论了深度学习中使用的所有常见损失函数,并在NumPy,PyTorch和TensorFlow中实现了它们。原创 2023-08-12 16:08:06 · 4511 阅读 · 1 评论 -
图神经网络并在 TensorFlow 中实现
本文将引导您了解图神经网络 (GNN) 并使用 TensorFlow 实现该网络。在后续的文章中,我们讨论 GNN 的不同变体及其实现。原创 2023-12-20 08:52:24 · 2832 阅读 · 1 评论 -
ML 系列:机器学习和深度学习的深层次总结( 15) — KNN — 第 1 部分
K-最近邻 (KNN) 算法是一种流行的监督机器学习算法,用于分类和回归任务。它是非参数惰性学习算法的一个典型例子。KNN 被认为是一种惰性学习算法,因为它在训练阶段不对底层数据分布做出任何假设,也不从训练数据中学习特定模型。相反,它是一种“惰性”或“延迟”学习,它只是记住训练数据集。原创 2024-10-09 08:52:27 · 1400 阅读 · 0 评论 -
机器学习/人工智能中的学习证明
在进行任何数学发展之前,我们必须首先了解学习的基础以及它如何与错误的概念密切相关。关于代价函数,它的工作原理是梯度下降原理。本文将回顾梯度下降原理。原创 2024-08-18 06:50:00 · 1910 阅读 · 2 评论 -
ML 系列:机器学习和深度学习的深层次总结(16) — 提高 KNN 效率-使用 KD 树和球树实现更快的算法
在机器学习系列的第 16 节,我们重点介绍了提高 K 最近邻 (KNN) 算法的效率,这是一种广泛用于分类和回归任务的方法。虽然 KNN 简单有效,但对于大型数据集来说,其计算成本可能会令人望而却步。为了解决这个问题,我们引入了两种高级数据结构:KD 树和球树,它们显着提高了 KNN 搜索的速度。原创 2024-10-09 09:10:25 · 1529 阅读 · 0 评论 -
【 语音问题 】解决在win 32/64上无法安装 pyaudio ?
Python3.7 无法安装pyaudio,度娘的结果基本都是这个,pip install pyaudio.....然而十有八九你的电脑不买账,会报错。本篇将介绍如何在win10+anaconda安装pyaudio。原创 2023-10-17 21:08:46 · 3287 阅读 · 2 评论 -
Bagging: 数量,而不是质量。
机器学习中的集成方法是指组合多个模型以提高预测性能的技术。集成方法背后的基本思想是聚合多个基础模型(通常称为弱学习器)的预测,以生成通常比任何单个模型更准确、更稳健的最终预测。一般而言,我们通常遵循质量胜于数量的原则。然而,在这种情况下,事实证明相反的原理同样有效。原创 2024-09-06 11:20:47 · 1127 阅读 · 0 评论 -
机器学习前沿:改进自身缺陷,满足新战略
机器学习在人工智能历史上扮演重要角色,然而,存在问题也不少。为了适应新时代和新任务,不做出重大改进是不可能的,本篇就一些突出问题和改进做出讨论。以便读者掌握未来的思路和方向。原创 2023-09-01 12:26:22 · 3228 阅读 · 0 评论 -
GraphViz :在Win10+conda+python的安装和测试
GraphViz 是一款开源的绘图工具,它可以用来绘制各种类型的图形,如流程图、类图、UML 图等。GraphViz 的绘图语言是基于 DOT 语言的,它通过描述节点和边的关系来生成图形。GraphViz 支持多种不同的输出格式,包括 PNG、SVG、PDF 等等,还可以通过插件来实现对 GraphViz 的扩展功能。GraphViz 工具可以在 Windows、Mac OS X、Linux 等多个平台上运行,是一个非常实用的绘图工具。原创 2021-08-02 13:43:47 · 8305 阅读 · 1 评论 -
现代C++中的从头开始深度学习:【6/8】成本函数
在机器学习中,我们通常将问题建模为函数。因此,我们的大部分工作都包括寻找使用已知模型近似函数的方法。在这种情况下,成本函数起着核心作用。原创 2023-08-31 14:00:47 · 5645 阅读 · 0 评论 -
第一次部署机器学习模型
自从我开始机器学习以来,Jupyter Notebooks一直是我最忠实的伙伴。从数据预处理到模型训练、微调和测试,Jupyter Notebooks 在每一步都为我提供支持。然而,我一直都知道,在这些数字页面之外,还有一个完整的世界——一个部署和应用的世界。原创 2023-09-15 13:35:03 · 2581 阅读 · 1 评论 -
ML 系列:机器学习和深度学习的深层次总结(01)
欢迎学习机器学习系列。这门综合课程目前包括40个部分,指导您了解机器学习、统计和数据分析的基本概念和技术。以下是到目前为止涵盖的关键主题的简要概述原创 2024-09-09 12:32:15 · 1621 阅读 · 0 评论 -
“理解梯度下降:直觉、数学公式和推导”
梯度下降是机器学习中使用的一种流行的优化算法,通过迭代调整函数的参数来最小化函数。基本思想是将函数的参数沿函数梯度最陡峭下降的方向移动。原创 2023-10-15 11:19:01 · 2493 阅读 · 0 评论 -
【数据挖掘】时间序列模型处理指南(二)
本文是一个系列文章的第二部分,本文将用股票数据进行时间序列分析为例,对时间分析的方法、过程,进行详细阐述。原创 2023-06-30 08:39:15 · 6670 阅读 · 0 评论 -
彻底改变时尚:使用 GAN 实现 AI 的未来
想象一下,在这个世界里,时装设计师永远不会用完新想法,我们穿的每一件衣服都是一件艺术品。听起来很有趣,对吧?好吧,我们可以在通用对抗网络 (GAN)的帮助下在现实中实现这一目标。GAN模糊了现实与想象之间的界限。它就像一个瓶子里的精灵,满足了我们所有的创造性愿望。我们甚至可以在GAN的帮助下在地球上创造一个太阳,这在现实生活中是不可能的。原创 2024-07-16 08:20:11 · 2394 阅读 · 0 评论 -
谈人工智能和数据治理
我们已经看到,人工智能可以以一种触发范式转变开始的方式增强数据治理。很多变化已经发生,而且它们将继续存在。原创 2023-07-16 07:49:04 · 3728 阅读 · 0 评论 -
改变我们生活的得力算法
M在过去的几年里,学习取得了长足的进步,现在它在各个领域的应用已经飙升。从Chat-GPT到DALL。E 2,每个应用程序都使用机器学习算法为我们提供最好的结果,并使我们能够更高效,更准确地解决复杂问题。在这篇博文中,我将分享10种最有前途的机器学习算法,它们可以主宰未来。原创 2023-08-11 17:38:07 · 3288 阅读 · 0 评论 -
ML 系列:【13 】— Logistic 回归(第 2 部分)
在这篇文章中,我们将深入研究 squashing 方法,这是有符号距离方法(第 12节)的一种很有前途的替代方案。squashing 方法通过提供增强的对异常值的弹性来解决有符号距离方法的缺点,从而提高 Logistic 回归模型的整体性能和准确性。原创 2024-10-08 19:40:16 · 997 阅读 · 0 评论 -
在Win10下安装python+tensorflow-gpu-2.4 虚拟环境
1 确定CUDA版本;首先需要确定安装的python和tf版本。通过下述地址查看:在 Windows 环境中从源代码构建 | TensorFlow (google.cn);并确定如下版本:因此需要CUDA11.0资源。2 win10下安装CUDA11.0查看独立显卡:win+R打开cmd;输入dxdiag较为重要的信息如下:产品类型:GeForce 产品系列:GeForce 30 series 【此处30就是指3060的30】 产品: GeFor...原创 2021-08-05 16:58:29 · 4025 阅读 · 0 评论 -
机器学习如何用于音频分析?
近十年来,机器学习越来越受欢迎。事实上,它被用于医疗保健、农业和制造业等众多行业。随着技术和计算能力的进步,机器学习有很多潜在的应用正在被创造出来。由于数据以多种格式大量可用,因此现在是使用机器学习和数据科学从数据中提取各种见解并使用它们进行预测的合适时机。机器学习最有趣的应用之一是音频分析和分别了解不同音频格式的质量。因此,使用各种机器学习和深度学习算法可确保使用音频数据创建和理解预测。原创 2024-09-03 06:56:20 · 1397 阅读 · 0 评论 -
ML 系列:机器学习和深度学习的深层次总结(02)线性回归
欢迎学习机器学习系列。这门综合课程目前包括40个部分,指导您了解机器学习、统计和数据分析的基本概念和技术。以下是最基本机器学习模型,线性回归模型。原创 2024-09-10 10:52:48 · 1408 阅读 · 0 评论 -
恢复错误:\anaconda3\lib\site-packages\zmq\backend\cffi\__pycache__\_cffi_ext.c(266)
在安装或运行软件,如果出现包含zmq的错误提示,那它是什么意思?它将使得哪些软件无法运行,应该如何处理,才能恢复?本篇将我遇到的和我学到的告诉大家。原创 2022-01-10 14:44:44 · 4733 阅读 · 0 评论 -
低差异序列:范德科皮特序列(Van der Corput sequence)
低差异序列是因为要引入伪随机序列空间而提出的。因为伪随机数虽然可以电脑产生,但是分布不够均匀,在仿真实验中产生不准。比如,用蒙特卡洛算法就要求无论所取空间大小如何,都应该将样本均匀分布在集合中。因此,范德科皮特序列就显得尤其有用。原创 2022-01-14 16:21:32 · 6349 阅读 · 0 评论 -
【数据挖掘】推荐系统(一):协同过滤
推荐系统是一种计算机程序或算法,用于预测用户对特定项目的兴趣度,并根据这些预测向用户提供个性化推荐。这种系统通常使用大量数据来分析用户的行为和偏好,以找出潜在的喜好和兴趣。推荐系统可以应用于电子商务、社交媒体、影视娱乐等领域,帮助提高用户体验、增加销售和粘性。原创 2023-07-07 14:11:35 · 8075 阅读 · 0 评论 -
了解 K-Means 聚类的工作原理(详细指南)
K-means 的目标是将一组观测值划分为 k 个聚类,每个观测值分配给均值(聚类中心或质心)最接近的聚类,从而充当该聚类的代表。原创 2024-08-17 09:20:14 · 2281 阅读 · 1 评论 -
2024 年 100 大数据科学面试问答
数据科学是一个快速发展的领域,它正在改变组织根据数据理解和做出决策的方式。因此,公司越来越多地寻求聘请数据科学家来帮助他们理解数据并推动业务成果。这导致了对数据科学家的高需求,这些职位的竞争可能非常激烈。为了帮助您准备数据科学面试,我们编制了一份您可能遇到的前 100 个数据科学面试问题列表。原创 2024-07-22 01:12:24 · 2518 阅读 · 0 评论
分享