控制论
文章平均质量分 94
无水先生
擅长数学,能熟练应用泛函分析、统计学、随机过程、逼近论、微分几何、非欧几何(双曲、共形)等数学理论,有数学建模能力。从事图像处理二十年以上,从事人工智能行业10年以上;在船舶、通信、铁路、教育等行业开发软件产品。
展开
-
信息论在机器学习中的实际应用
如作为一名数据科学家,你可能经常听到“信息论”这个词在机器学习的背景下出现。但究竟什么是信息论,为什么它对机器学习如此重要?在本文中,我们将探讨信息论的基础知识、其关键概念,以及它如何以简单而翔实的方式应用于机器学习。原创 2024-08-09 08:02:18 · 1665 阅读 · 0 评论 -
物理动力系统的强化学习:一种替代方法
对于非线性系统,我们面临着两个问题:系统识别——即理解它在给定状态下的行为方式,以及系统控制——它如何在短期和长期内响应给定的输入而变化,以及进行什么输入以获得期望的结果。原创 2024-08-07 13:55:04 · 1473 阅读 · 0 评论 -
【数学建模】矩阵微分方程
我相信你们中的许多人都熟悉微分方程,或者至少知道它们。微分方程是数学中最重要的概念之一,也许最著名的微分方程是布莱克-斯科尔斯方程,它控制着任何股票价格。原创 2024-05-04 00:19:27 · 3385 阅读 · 10 评论 -
双摆及其他:从多臂摆研究混沌
关于混沌如何实现?能否用计算机模拟?本文从简单的物理道具:双臂摆的物理方程,引进混沌理念。进而进行复杂的自然状态中。本文只是研究题目的引出,日后如果需要进一步加深,不妨提供一个踮脚的石头。原创 2024-04-06 14:41:32 · 2610 阅读 · 0 评论 -
使用 Python SimPy 进行离散事件仿真[01]: — 构建基本模型
在计算机编程领域,仿真在理解复杂系统、进行实验和做出明智决策方面发挥着关键作用。SimPy 是“Simulation Python”的缩写,是一个功能强大且多功能的仿真框架,允许开发人员和研究人员使用 Python 创建和分析离散事件仿真。无论您是新手还是经验丰富的程序员,SimPy 都提供了一种直观有效的方法来建模和模拟各种场景,使其成为从运筹学到物流、从流行病学到制造等广泛领域不可或缺的工具。本文是一个关于如何精通 simpy 的内容广泛的系列。原创 2024-03-25 11:40:05 · 2595 阅读 · 0 评论 -
太阳系的混沌与稳定
在过去的二十年里,人们已经认识到混沌动力学在太阳系中普遍存在。我们现在了解到,太阳系中小成员——小行星、彗星和行星际尘埃——的轨道是混沌的,并且在地质时间尺度上发生了巨大的变化。主要行星的轨道也是混乱的吗?答案并不简单,其中的微妙之处引发了新的问题。原创 2024-03-14 08:08:59 · 2209 阅读 · 0 评论 -
MPC预测控制概述和C++ 中的模型库
以下文章描述了应用模型预测控制器的简单控制系统方法。本文讨论了这种类型的控制的基本机制,该机制适用于各种工程领域。MPC 涉及对未来系统行为的预测(由一组方程描述的模型)。在优化过程(成本函数)期间实现物理模型的所需位置。原创 2023-10-22 10:50:21 · 2885 阅读 · 0 评论 -
C++ 中的模型预测路径积分 (MPPI) 控制
模型预测路径积分控制(MPPI)是一种基于采样的模型预测控制算法。是MPC控制模型的延申和拓宽,要了解MPPI需要先理解MPC,参见文章:MPC预测控制概述和C++ 中的模型库-CSDN博客。原创 2023-10-22 10:56:45 · 4001 阅读 · 0 评论
分享