统计学模型
文章平均质量分 91
该栏目包括:统计学、概率学、贝叶斯推断所涵盖的数学模型,以及在机器学习、深度学习、数据分析、图形图像处理的应用。
无水先生
擅长数学,能熟练应用泛函分析、统计学、随机过程、逼近论、微分几何、非欧几何(双曲、共形)等数学理论,有数学建模能力。从事图像处理二十年以上,从事人工智能行业10年以上;在船舶、通信、铁路、教育等行业开发软件产品。
展开
-
假设检验简介
许多问题需要我们决定是接受还是拒绝某个参数。该陈述通常称为假设,有关假设的决策过程称为假设检验。这是统计推断最有用的概念之一,因为许多类型的决策问题都可以表述为假设检验问题。原创 2024-10-31 22:32:17 · 1043 阅读 · 0 评论 -
Z 检验和 T 检验之间的区别
在本文中,我们遵循分步过程来了解假设检验、1 类错误、2 类错误、显著性水平、临界值、p 值、非定向假设、方向假设、z 检验和 t 检验的基础知识。最后,我们为冠状病毒案例研究实施了双样本 z 检验。因此,您将在本文中清楚地了解 t 检验与 z 检验。原创 2024-10-31 22:07:13 · 1243 阅读 · 0 评论 -
25 个概率统计问题助你在数据科学面试中脱颖而出
开始从事数据科学或分析工作?面试可能充满挑战,尤其是概率和统计问题。回答这些问题不仅需要理论知识,还需要对应用统计概念有实际的理解。在本文中,我们将深入探讨关键的面试问题,揭开概率和统计的复杂性。无论您是在准备面试还是只是想提高自己的能力,这些见解都将非常宝贵。原创 2024-10-14 10:54:25 · 676 阅读 · 0 评论 -
数据科学初学者都应该知道的 15 个基本统计概念
统计学,它已经存在了几个世纪,但在当今的数字时代仍然至关重要。为什么?因为基本的统计概念是数据分析的支柱,使我们能够理解每天生成的大量数据。这就像与数据对话,统计学可以帮助我们提出正确的问题并理解数据试图讲述的故事。原创 2024-10-10 10:28:19 · 1490 阅读 · 0 评论 -
概率中的50个具有挑战性的问题[03/50]:轻率的陪审员
我最近对与概率有关的问题产生了兴趣。我偶然读到了弗雷德里克·莫斯特勒(Frederick Mosteller)的《概率论中的五十个具有挑战性的问题与解决方案》(Fifty Challenge Problems in Probability with Solutions)一书。我认为创建一个系列来讨论这些可能作为面试问题出现的迷人问题会很有趣。每篇文章只有 1 个问题,使其成为一个总共有 50 个部分的系列。让我们潜入并激活我们的脑细胞。原创 2023-12-23 13:48:50 · 4128 阅读 · 1 评论 -
概率中的50个具有挑战性的问题[第7部分]:治愈强迫性赌徒
我最近对与概率有关的问题产生了兴趣。偶然读到了弗雷德里克·莫斯特勒(Frederick Mosteller)的《概率论中的五十个具有挑战性的问题与解决方案》)一书。我认为创建一个系列来讨论这些可能作为面试问题出现的迷人问题会很有趣。每篇文章只有 1 个问题,使其成为一个总共有 50 个部分的系列。让我们潜入并激活我们的脑细胞。原创 2023-12-28 08:20:50 · 3970 阅读 · 1 评论 -
概率中的 50 个具有挑战性的问题 [05/50]:正方形硬币
我最近对与概率有关的问题产生了兴趣。我偶然读到了弗雷德里克·莫斯特勒(Frederick Mosteller)的《概率论中的五十个具有挑战性的问题与解决方案》)一书。我认为创建一个系列来讨论这些可能作为面试问题出现的迷人问题会很有趣。每篇文章只有 1 个问题,使其成为一个总共有 50 个部分的系列。让我们潜入并激活我们的脑细胞!原创 2023-12-24 11:20:07 · 3849 阅读 · 1 评论 -
量子波函数白话解释
在量子力学中,粒子是我们只有在测量它们时才能看到的东西。其中运动模式由满足薛定谔方程的波函数描述。波函数并非量子力学所独有,它用于其他系统,例如水波纹的运动、声波、弦上的振动、电磁波等。这些系统中的每一个都有自己的波动方程,这些方程具有相似之处,因为它们都表示波函数在空间和时间上的变化。原创 2024-05-11 22:01:45 · 1971 阅读 · 0 评论 -
50 个具有挑战性的概率问题 [01/50]:袜子抽屉
我最近对与概率有关的问题产生了兴趣。我偶然读到了弗雷德里克·莫斯特勒(Frederick Mosteller)的《概率论中的五十个具有挑战性的问题与解决方案》(Fifty Challenge Problems in Probability with Solutions)一书。我认为创建一个系列来讨论这些可能作为面试问题出现的迷人问题会很有趣。每篇文章只有 1 个问题,使其成为一个总共有 50 个部分的系列。让我们潜入并激活我们的脑细胞!原创 2023-12-23 08:32:14 · 4343 阅读 · 0 评论 -
空间不确定性的表示与估计
本文介绍了一种估算温度的通用方法之间的标称关系和预期误差(协方差)表示对象相对位置的坐标框。这些帧只能通过一个简单的例子间接地知道一系列空间关系,每个关系都有其相关的错误,由多种原因引起,包括定位错误,测量误差或零件尺寸公差。原创 2024-09-11 21:24:16 · 1644 阅读 · 0 评论 -
概率的 50 个具有挑战性的问题 [8/50]:完美的桥牌
我最近对与概率有关的问题产生了兴趣。我偶然读到了弗雷德里克·莫斯特勒(Frederick Mosteller)的《概率论中的五十个具有挑战性的问题与解决方案》)一书。我认为创建一个系列来讨论这些可能作为面试问题出现的迷人问题会很有趣。每篇文章只有 1 个问题,使其成为一个总共有 50 个部分的系列。让我们潜入并激活我们的脑细胞。原创 2024-01-01 08:43:24 · 4145 阅读 · 0 评论 -
概率中的50个具有挑战性的问题[02/50]:连续获胜
我最近对与概率有关的问题产生了兴趣。我偶然读到了弗雷德里克·莫斯特勒(Frederick Mosteller)的《概率论中的五十个具有挑战性的问题与解决方案》(Fifty Challenge Problems in Probability with Solutions)一书。我认为创建一个系列来讨论这些可能作为面试问题出现的迷人问题会很有趣。每篇文章只有 1 个问题,使其成为一个总共有 50 个部分的系列。让我们潜入并激活我们的脑细胞 !原创 2023-12-23 09:30:06 · 4312 阅读 · 1 评论 -
准确度和精密度之间有什么区别?
在这篇文章中,当我们继续我的系列文章,标题为“有什么区别......?今天,我们将探讨统计学和数据科学中的两个重要术语:准确性和精确度。这些概念对于理解测量和预测的质量至关重要。通过揭示准确性和精确度之间的差异,我们可以获得对数据分析和解释世界的宝贵见解。因此,让我们深入研究并揭示准确度和精确度之间的区别。原创 2024-08-08 05:27:02 · 1811 阅读 · 0 评论 -
概率论中的 50 个具有挑战性的问题 [第 6 部分]:Chuck-a-Luck
我最近对与概率有关的问题产生了兴趣。我偶然读到了弗雷德里克·莫斯特勒(Frederick Mosteller)的《概率论中的五十个具有挑战性的问题与解决方案》)一书。我认为创建一个系列来讨论这些可能作为面试问题出现的迷人问题会很有趣。每篇文章只有 1 个问题,使其成为一个总共有 50 个部分的系列。让我们潜入并激活我们的脑细胞!原创 2023-12-25 11:30:16 · 4867 阅读 · 0 评论 -
50 个具有挑战性的概率问题 [04/50]:尝试直至首次成功
你好,我最近对与概率相关的问题产生了兴趣。我偶然发现了 Frederick Mosteller 所著的《五十个具有挑战性的概率问题及其解决方案》这本书。我认为创建一个系列来讨论这些可能作为面试问题出现的迷人问题会很有趣。每篇文章仅包含 1 个问题,使其成为一个总共 50 个部分的系列。让我们潜入并激活我们的脑细胞!原创 2023-12-24 11:10:22 · 4283 阅读 · 0 评论 -
机器学习的概率论
在我们的生活中,我们面临许多不确定的事件。股票价格是随机且不确定的。货币市场是不确定的。在 COVID-19 大流行期间,我们的生活充满不确定性(还记得那次吗?😷)。天气难以预测。有人可能会说,我们的生活是建立在随机性之上的。原创 2024-07-26 16:28:57 · 1950 阅读 · 0 评论 -
准确度与精密度:差异和示例
当您依赖数据得出结论时,准确度和精确度是测量的关键属性。这两个概念都适用于测量系统中的一系列测量,并与测量误差的类型有关。原创 2024-08-08 06:21:18 · 1631 阅读 · 0 评论 -
辛普森悖论:当数据讲述两个不同的故事时!
你有没有被统计数据愚弄过?辛普森悖论表明,分析总体数据可能会掩盖重要趋势。我们可以通过分解信息来发现逆转或消除关系的隐藏因素。这份简短的指南将使您避免被汇总数据误导,并确保您看到全貌。原创 2024-07-25 14:22:01 · 1310 阅读 · 0 评论 -
高斯过程的数学理解
G澳大利亚的过程是有益的,特别是当我们有少量数据时。当我在制造业担任数据科学家时,我们的团队使用这种算法来揭示我们接下来应该进行哪些实验条件。但是,此算法不如其他算法流行。在这篇博客中,我将通过可视化和 Python 实现来解释高斯过程 [1] 的数学背景。原创 2024-07-01 16:39:46 · 2465 阅读 · 2 评论 -
参数检验与非参数检验:使用哪一种进行假设检验?
如果你正在学习统计学,你会经常遇到两个术语——参数和非参数测试。这些术语对于任何想要追求统计和数据科学的人来说都是必不可少的。然而,很少有人理解这些术语的严重性,尤其是在处理对统计学及其在数据科学中的实施的整体理解时。原创 2024-06-26 02:34:20 · 2496 阅读 · 0 评论 -
空间不确定性的表示与估计
本文介绍了一种估算温度的通用方法之间的标称关系和预期误差(协方差)表示对象相对位置的坐标框。这些帧只能通过一个简单的例子间接地知道一系列空间关系,每个关系都有其相关的错误,由多种原因引起,包括定位错误,测量误差或零件尺寸公差。这估算方法可用于回答以下问题:是否将摄像头连接到机器人上可能会有在其视野中的特定参照对象。计算的估计值与独立蒙特卡罗法的估计值吻合得很好卡洛模拟。这种方法使我们有可能做出正确的决定提前了解一段不确定的关系是否足够准确地完成某项任务,如果不足够,则了解一段不确定的关系的程度改进定原创 2024-06-15 15:23:58 · 2850 阅读 · 0 评论 -
混合模型方差分析
在本文中,我将讨论一种称为混合模型方差分析的方差分析变体,也称为具有重复测量的 2 因素方差分析。这种统计方法用于分析包括受试者间因素(不同组)和受试者内因素(对同一受试者的重复测量)的数据。原创 2024-06-01 21:30:15 · 2711 阅读 · 0 评论 -
【统计学精要】:使用 Python 实现的统计检验— 1/10
欢迎来到“掌握 Python 统计测试:综合指南”,它将介绍本手册中您需要熟悉使用 Python 的所有基本统计测试和分析方法。本文将为您提供统计测试及其应用的全面介绍,无论您是新手还是经验丰富的数据科学家。原创 2023-08-06 17:39:18 · 4136 阅读 · 3 评论 -
统计收敛及其结果
什么是统计收敛,如何度量迭代和精度条件,这是个复杂的综合问题,需要很大规模的数据示例,因此本文就显得冗长,不过本文给出一定建设性意见,因而极具参考意义。原创 2024-05-18 18:35:06 · 2355 阅读 · 0 评论 -
无模型时间序列预测 (MLTF):一种新的非参数预测方法
对于时间序列的预测问题,我们知道有参数估计:统计法,神经网络法,也有非参数估计方法,还有一种新型算法,那就是无模型估计算法MLTF。MLTF是个什么概念,本篇将讲述它的起源,详细理论实践,请大家看专业论著。原创 2024-05-10 15:30:18 · 2342 阅读 · 0 评论 -
【统计推断】-01 抽样原理之(六):三个示例
对于抽样问题,前几期文章都是理论探讨。本篇给出若干示例,展现具体的情况下,面对数据,如何给出处理策略。原创 2024-05-06 15:48:52 · 2537 阅读 · 3 评论 -
【统计推断】-01 抽样原理之(五):大数定律
大数定律和中心极限定律无疑是抽样理论最重要的理论支持。注意这两个定律是以公理形式出现,因此不要试图证明。有种种案例可以强化对这两个公理的理解。本篇将叙述大数定律的意义,合理性,约束条件。从直观上加强对这个理论的理解。原创 2024-05-02 00:49:42 · 2906 阅读 · 1 评论 -
【统计推断】-01 抽样原理之(四):中心极限定律
大数定律和中心极限定律无疑是抽样理论最重要的理论支持。注意这两个定律是以公理形式出现,因此不要试图证明。有种种案例可以强化对这两个公理的理解。本篇将叙述两个公理意义,合理性,约束条件。从直观上加强对这个理论的理解。原创 2024-04-30 15:06:41 · 2243 阅读 · 0 评论 -
【数学视野】Softmax 函数和 Gibbs 分布之间的数学桥梁
函数是各种神经网络中的基本元素,尤其是那些为分类任务而设计的神经网络。它有效地将实值分数 (logits) 的向量从神经网络的最终线性输出转换为概率分布。softmax 输出的每个组件都表示输入属于特定类的概率。原创 2024-04-30 12:02:05 · 1981 阅读 · 0 评论 -
[统计学] 对如何设计抽样模型的思考
在本章中,我们将探讨进行假设检验时需要了解的 3 个重要分布:总体分布、样本分布和抽样分布。最重要的是,我们将探索它们之间的关系,以便您不仅内化它们是什么,而且内化它们为什么重要。原创 2024-04-29 18:33:37 · 2385 阅读 · 0 评论 -
【统计推断】-01 抽样原理之(三)
上文中叙述母体和抽样的设计;以及抽样分布的概念,本篇将这种关系定量化,专门针对抽样的指标参数和母体参数的对应关系,这是我们以后做检验的基础。原创 2024-04-29 16:55:43 · 2740 阅读 · 4 评论 -
【统计推断】-01 抽样原理之(二)
本篇是对上一篇文章(【统计推断】-01 抽样原理之(一))的展开阐述,本文用一些人口统计的事实,阐述抽样设计的要点和重要概念,通过此文,我们对母体和抽样的事实更加清晰,通过阅读此文,我们对后面文章的各类检验做出铺陈,使得统计操作过程更加具体详实。原创 2024-04-28 18:37:23 · 2119 阅读 · 0 评论 -
【统计推断】-01 抽样原理之(一)
统计学其实不比概率学更容易,进入AI时代,常常说的话是“贝叶斯推断比传统频率派统计更有效”,因而,人们就开始忽视传统的频率派统计学(我就是其中之一),然而,不懂的传统统计不足以用好贝爷斯,因为知识不足,没有对比,说白了智商不够,为了提高统计智商,这里专门开辟了传统统计推断的栏目。原创 2024-04-28 15:35:12 · 2450 阅读 · 0 评论 -
【torch高级】一种新型的概率学语言pyro(02/2)
贝叶斯推理,也就是变分概率模型估计,属于高级概率学模型,极有学习价值;一般来说,配合实际活动学习可能更直观,而pyro是pytorch的概率工具,不同于以往的概率工具,只是集中于统计工具,而pyro具备贝叶斯推断的全套设计,因此,跟着pyro学习会更有前景,因此,建议读者重视pyro的存在,这就是本文的意义所在。原创 2023-10-28 12:33:08 · 2583 阅读 · 0 评论
分享