
统计学模型
文章平均质量分 91
该栏目包括:统计学、概率学、贝叶斯推断所涵盖的数学模型,以及在机器学习、深度学习、数据分析、图形图像处理的应用。
无水先生
擅长数学,能熟练应用泛函分析、统计学、随机过程、逼近论、微分几何、非欧几何(双曲、共形)等数学理论,有数学建模能力。从事图像处理二十年以上,从事人工智能行业10年以上;在船舶、通信、铁路、教育等行业开发软件产品。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
几个概率分布在机器学习应用示例
在这份快速指南中,我们将介绍最重要的分布——从始终公平的均匀分布,到钟形的正态分布,计数点击的泊松分布,以及二元选择的二项分布。没有复杂的数学,只有清晰的概念、真实的例子,以及为什么它们重要。原创 2025-08-08 19:50:58 · 1744 阅读 · 0 评论 -
[概率论基本概念4]什么是无偏估计
对于无偏和有偏估计,需要了解其叙事背景,是指整体和抽样得关系,也就是说整体得叙事是从理论角度的,而估计器原理是从实践角度说事;为了表明概率理论(不可操作)和统计学(可操作)的实践的一致性,于是提出有偏和无偏的观点。原创 2025-06-03 15:06:02 · 1850 阅读 · 0 评论 -
五个你也许不知道的统计检验
如果您整个职业生涯都依赖 t 检验和方差分析,本文正适合您。有很多鲜为人知的统计检验方法,它们可以彻底改变游戏规则,尤其是在处理复杂的现实世界数据时。在本文中,我们将介绍五种被低估的检验方法,并向您展示如何在免疫学(TCR/BCR 基因库)、金融(股票价格)和体育领域运用它们。原创 2025-05-30 13:40:08 · 1242 阅读 · 0 评论 -
【概率论基本概念02】最大似然估计原理
最大似然性估计到底是啥?我们从总体随机抽样中如何得到总体分布的参数?有个“独立同分布”的意味着什么?本文将给出详细叙述。原创 2025-05-25 16:38:27 · 1076 阅读 · 0 评论 -
【概率论基本概念01】点估计
关于概率和统计的学习,需要从根本上、原始概念中一点一点积累,这些基本概念的头绪特别多,一次性交待它们的面有困难,我们只能从点上入手,将点与点的关系连成面,最后完成系统学习的目的,这是一个长期任务。原创 2025-05-24 10:11:54 · 1186 阅读 · 0 评论 -
[概率论基本概念x]什么是经验分布
描述一个概率模型,有密度函数很好描述。如果写不出密度函数,退而用分布函数也能完整刻画,因此,分布函数表示比密度函数表示更加宽泛普适。本片讲述经验分布拟合分布函数的基础概念。原创 2025-05-20 18:00:03 · 1386 阅读 · 3 评论 -
连续概率分布 (拉普拉斯分布)
类似于高斯分布,还有其他的对称负指数分布,比如柯西分布,拉普拉斯分布,本篇讲述拉普拉斯分布。原创 2025-05-18 17:21:17 · 1277 阅读 · 0 评论 -
隐性狄利克雷分布 (LDA) 算法简述
关于主题模型中,主要的数学理论是“潜在狄利克雷分布”,那么“潜在狄利克雷分布”是如何工作的呢?本篇作为简单直观的入门教程,展示给读者。原创 2025-03-12 13:18:07 · 960 阅读 · 0 评论 -
均值与标准差、标准误的关系
本文介绍基本的统计学概念,标准差和标准误,此两个概念都与均值期望有一定联系,但它们之间本质上是不同的。原创 2025-03-01 21:44:33 · 1911 阅读 · 0 评论 -
共形预测理论解释
在这篇文章中,我们将了解共形预测的基本理论,这是一种强大的算法,允许数据科学家量化预测模型的不确定性并设置理想的误差阈值。原创 2025-02-17 12:43:00 · 1137 阅读 · 0 评论 -
概率问题之两个男孩问题
在概率问题中有很多有趣问题,也有些问题是很困惑无从下手的这里列出"两个男孩家庭的问题",试看如何分析和解决。原创 2025-02-14 21:59:58 · 905 阅读 · 0 评论 -
在异常检测中利用分布统计python实现
异常检测是识别数据中不符合预期行为的罕见或异常模式的过程。异常检测的应用范围涵盖各个行业,从欺诈检测到识别制造设备中的故障,甚至发现医疗保健数据中的异常情况。为了有效地检测这些异常,我们可以利用统计特征来突出显示与预期状态的偏差。原创 2024-12-30 20:50:22 · 745 阅读 · 0 评论 -
关于方差分析的一览
方差分析这个方法,直接指向:多类别、多属性的表格对比问题。其中包含类间距离和类内距离的比较。本篇将叙述其中的一些概念。原创 2024-12-29 11:06:10 · 1155 阅读 · 0 评论 -
理解有放回和无放回抽样 (Python)
概率的模型很重要,比如有放回抽样和无放回抽样,这两个模型都拥有很强实用型,绝不能说说就算了,而是用程序如何实现的问题。本教程将深入探讨有放回和无放回抽样,并涉及这些概念在数据科学中的一些常见应用。与往常一样,本教程中使用的代码可在我的GitHub上找到。让我们开始吧!原创 2024-12-27 17:32:03 · 1788 阅读 · 0 评论 -
关于Z检验的一切
假设检验属于推论统计。在假设检验中,我们从样本数据中得出关于总体数据的结论。原创 2024-12-24 16:13:07 · 1127 阅读 · 0 评论 -
ML 系列:第 40 节 — 最大似然MLE 的简单问题
最大似然估计 (MLE) 是统计学和机器学习中用于估计概率模型参数的基本技术。在本文中,我们将介绍一个使用 MLE 估计正态分布参数的简单示例。我们将使用 Python 进行实现和可视化。原创 2024-12-21 23:25:49 · 568 阅读 · 0 评论 -
ML 系列:第 41节 - 假设检验简介
在我们这个数据驱动的世界里,决策通常基于数据。假设检验在这个过程中起着至关重要的作用,无论是在商业决策、医疗保健领域、学术界还是质量改进的背景下。如果没有明确的假设和严格的假设检验,就有可能得出错误的结论并做出次优的决策。原创 2024-12-21 23:20:17 · 1087 阅读 · 0 评论 -
最大似然估计 (MLE) 和最大后验估计 (MAP) 背后的直觉
在数据分析中,分析师不同,给出的方案也不同,这就导致对同一事务的分析,都是“正确”的,但精致程度不同,因而导致性能上的差异。本文将对不同水平的分析(MLE和MAP)进行对照,让读者自行理解其中的奥妙。原创 2024-12-19 15:03:27 · 1651 阅读 · 0 评论 -
复杂网络系列:第 4 部分 - 使用 NetworkX 进行网络分析
在本节中,我们将使用 NetworkX 探索基本的网络指标。这些指标有助于我们了解节点的重要性、网络的结构以及其中的各种动态。让我们深入研究中心性度量、聚类系数和平均路径长度。原创 2024-12-16 20:59:29 · 1324 阅读 · 0 评论 -
ML 系列:第 39 天 - 估计方法:最大似然估计 (MLE)
在统计学领域,我们经常需要根据观察到的数据估计统计模型的参数。为此目的广泛使用的两种关键方法是最大似然估计 (MLE) 和最大后验估计 (MAP)。虽然 MLE 仅关注给定参数的观察数据的可能性,但 MAP 将先验知识纳入估计过程。在这篇博文中,我们将深入探讨 MLE 的概念,并承诺在以下部分中探索 MAP。原创 2024-12-06 14:49:29 · 895 阅读 · 0 评论 -
ML 系列:第 38节 — 估算方法:矩量法
在点估计的背景下,有几种方法可用于从样本数据估计总体参数。两种主要方法是矩法和最大似然估计 (MLE)。今天我们来探索一下运动法,下一天我们将介绍 MLE 方法。原创 2024-12-05 19:11:02 · 1728 阅读 · 0 评论 -
ML 系列:第 39 节 - 估计方法:最大似然估计 (MLE)
在统计学领域,我们经常需要根据观察到的数据估计统计模型的参数。为此目的广泛使用的两种关键方法是最大似然估计 (MLE) 和最大后验估计 (MAP)。虽然 MLE 仅关注给定参数的观察数据的可能性,但 MAP 将先验知识纳入估计过程。在这篇博文中,我们将深入探讨 MLE 的概念,并承诺在以下部分中探索 MAP。原创 2024-12-04 23:22:47 · 1246 阅读 · 0 评论 -
ML 系列:第 42节 — 模型比较的统计测试
在本教程中,我们探索了用于模型比较的各种假设检验,包括单样本 t 检验、双样本 t 检验、配对 t 检验、方差分析、卡方检验和z 检验。每种检验都有特定的用途,有助于验证机器学习模型的不同方面。理解和应用这些检验可确保模型的稳健性和可靠性。原创 2024-12-03 16:41:12 · 1240 阅读 · 0 评论 -
统计学知识:类间隙和类距离(01)
统计学中的类距是一个重要元素,尤其是在组织和汇总数据时。它是将数据点分组为有意义的类别的基本工具,从而实现更易于管理和更有洞察力的分析。在这篇综合性文章中,我们将深入探讨统计学中的类距概念、其重要性以及如何有效地创建和利用它们。原创 2024-12-03 13:04:57 · 1123 阅读 · 0 评论 -
ML 系列:第 37 节 — 统计中的估计
什么是估算?统计学中的估计是使用样本数据推断或近似未知总体参数值的过程。它旨在根据代表性样本对总体做出有根据的猜测,使统计学家能够做出明智的决策和预测。原创 2024-12-02 22:56:20 · 1046 阅读 · 0 评论 -
ML 系列:第 36 节 — 统计学中的抽样类型
统计学中的抽样类型,抽样是统计学中的一个基本概念,涉及从较大的总体中选择个体或观察值的子集来估计整个总体的特征。有效的抽样方法可确保所选子集准确代表总体,减少偏差并提高统计推断的可靠性。原创 2024-11-26 23:47:28 · 1371 阅读 · 0 评论 -
ML 系列:第 34 节 — 描述性统计:离差测量
在处理数据时,不仅要了解中心趋势(如均值、中位数和众数),还要了解数据点的分布程度,这一点至关重要。离散度的度量有助于我们了解数据的可变性或散布性。让我们深入研究离散度的四个基本度量:范围、方差、标准差和四分位距 (IQR)。原创 2024-11-25 21:19:22 · 907 阅读 · 0 评论 -
ML 系列:第 32节 — 机器学习中的统计简介
随着我们深入研究机器学习领域,了解统计学在该领域的作用至关重要。统计学是机器学习的支柱,它提供了理解数据和获得有意义见解的工具和方法。在这篇文章中,我们将探讨统计的定义、它在机器学习中的重要性,以及描述性统计和推理统计之间的区别。原创 2024-11-25 20:40:22 · 1163 阅读 · 0 评论 -
ML 系列:第 25 节 — 连续概率分布 (高斯分布)
高斯分布是典型的连续函数的概率分布。然而,现实中我们只能用离散形式去表述,而使用连续分布在计算机上,就是需要技巧的。原创 2024-11-16 15:22:40 · 1112 阅读 · 0 评论 -
假设检验简介
许多问题需要我们决定是接受还是拒绝某个参数。该陈述通常称为假设,有关假设的决策过程称为假设检验。这是统计推断最有用的概念之一,因为许多类型的决策问题都可以表述为假设检验问题。原创 2024-10-31 22:32:17 · 1307 阅读 · 0 评论 -
Z 检验和 T 检验之间的区别
在本文中,我们遵循分步过程来了解假设检验、1 类错误、2 类错误、显著性水平、临界值、p 值、非定向假设、方向假设、z 检验和 t 检验的基础知识。最后,我们为冠状病毒案例研究实施了双样本 z 检验。因此,您将在本文中清楚地了解 t 检验与 z 检验。原创 2024-10-31 22:07:13 · 1925 阅读 · 0 评论 -
25 个概率统计问题助你在数据科学面试中脱颖而出
开始从事数据科学或分析工作?面试可能充满挑战,尤其是概率和统计问题。回答这些问题不仅需要理论知识,还需要对应用统计概念有实际的理解。在本文中,我们将深入探讨关键的面试问题,揭开概率和统计的复杂性。无论您是在准备面试还是只是想提高自己的能力,这些见解都将非常宝贵。原创 2024-10-14 10:54:25 · 925 阅读 · 0 评论 -
数据科学初学者都应该知道的 15 个基本统计概念
统计学,它已经存在了几个世纪,但在当今的数字时代仍然至关重要。为什么?因为基本的统计概念是数据分析的支柱,使我们能够理解每天生成的大量数据。这就像与数据对话,统计学可以帮助我们提出正确的问题并理解数据试图讲述的故事。原创 2024-10-10 10:28:19 · 2159 阅读 · 0 评论 -
概率中的50个具有挑战性的问题[03/50]:轻率的陪审员
我最近对与概率有关的问题产生了兴趣。我偶然读到了弗雷德里克·莫斯特勒(Frederick Mosteller)的《概率论中的五十个具有挑战性的问题与解决方案》(Fifty Challenge Problems in Probability with Solutions)一书。我认为创建一个系列来讨论这些可能作为面试问题出现的迷人问题会很有趣。每篇文章只有 1 个问题,使其成为一个总共有 50 个部分的系列。让我们潜入并激活我们的脑细胞。原创 2023-12-23 13:48:50 · 4846 阅读 · 1 评论 -
概率中的50个具有挑战性的问题[第7部分]:治愈强迫性赌徒
我最近对与概率有关的问题产生了兴趣。偶然读到了弗雷德里克·莫斯特勒(Frederick Mosteller)的《概率论中的五十个具有挑战性的问题与解决方案》)一书。我认为创建一个系列来讨论这些可能作为面试问题出现的迷人问题会很有趣。每篇文章只有 1 个问题,使其成为一个总共有 50 个部分的系列。让我们潜入并激活我们的脑细胞。原创 2023-12-28 08:20:50 · 4722 阅读 · 1 评论 -
概率中的 50 个具有挑战性的问题 [05/50]:正方形硬币
我最近对与概率有关的问题产生了兴趣。我偶然读到了弗雷德里克·莫斯特勒(Frederick Mosteller)的《概率论中的五十个具有挑战性的问题与解决方案》)一书。我认为创建一个系列来讨论这些可能作为面试问题出现的迷人问题会很有趣。每篇文章只有 1 个问题,使其成为一个总共有 50 个部分的系列。让我们潜入并激活我们的脑细胞!原创 2023-12-24 11:20:07 · 4591 阅读 · 1 评论 -
量子波函数白话解释
在量子力学中,粒子是我们只有在测量它们时才能看到的东西。其中运动模式由满足薛定谔方程的波函数描述。波函数并非量子力学所独有,它用于其他系统,例如水波纹的运动、声波、弦上的振动、电磁波等。这些系统中的每一个都有自己的波动方程,这些方程具有相似之处,因为它们都表示波函数在空间和时间上的变化。原创 2024-05-11 22:01:45 · 3283 阅读 · 0 评论 -
50 个具有挑战性的概率问题 [01/50]:袜子抽屉
我最近对与概率有关的问题产生了兴趣。我偶然读到了弗雷德里克·莫斯特勒(Frederick Mosteller)的《概率论中的五十个具有挑战性的问题与解决方案》(Fifty Challenge Problems in Probability with Solutions)一书。我认为创建一个系列来讨论这些可能作为面试问题出现的迷人问题会很有趣。每篇文章只有 1 个问题,使其成为一个总共有 50 个部分的系列。让我们潜入并激活我们的脑细胞!原创 2023-12-23 08:32:14 · 5312 阅读 · 0 评论 -
空间不确定性的表示与估计
本文介绍了一种估算温度的通用方法之间的标称关系和预期误差(协方差)表示对象相对位置的坐标框。这些帧只能通过一个简单的例子间接地知道一系列空间关系,每个关系都有其相关的错误,由多种原因引起,包括定位错误,测量误差或零件尺寸公差。原创 2024-09-11 21:24:16 · 2168 阅读 · 0 评论 -
概率的 50 个具有挑战性的问题 [8/50]:完美的桥牌
我最近对与概率有关的问题产生了兴趣。我偶然读到了弗雷德里克·莫斯特勒(Frederick Mosteller)的《概率论中的五十个具有挑战性的问题与解决方案》)一书。我认为创建一个系列来讨论这些可能作为面试问题出现的迷人问题会很有趣。每篇文章只有 1 个问题,使其成为一个总共有 50 个部分的系列。让我们潜入并激活我们的脑细胞。原创 2024-01-01 08:43:24 · 4919 阅读 · 0 评论