变分原理和对抗网络
文章平均质量分 94
变分法是一门与牛顿微积分一样古老的学科 莱布尼茨。它的产生是出于研究身体问题的需要,其中寻求最佳解决方案;而对抗神经网络就是以变分原理的基础的实践。
无水先生
擅长数学,能熟练应用泛函分析、统计学、随机过程、逼近论、微分几何、非欧几何(双曲、共形)等数学理论,有数学建模能力。从事图像处理二十年以上,从事人工智能行业10年以上;在船舶、通信、铁路、教育等行业开发软件产品。
展开
-
GAN 如何打造人造名人身份?
在人工智能时代,一个非凡的现象正在显现——生成对抗网络(GAN)正在巧妙地打造人工名人身份。这种技术与创造力的有趣融合催生了全新的数字名人。加入我们,踏上一段引人入胜的旅程,深入 GAN 世界,揭开创造迷人的虚拟领域的人造名人角色背后的魔力。GANs如何使这成为可能?让我们来探索这种数字艺术背后的秘密。原创 2024-07-14 18:59:24 · 1913 阅读 · 0 评论 -
从GAN到WGAN(02/2)
生成对抗网络 (GAN) 在许多生成任务中显示出巨大的效果,以复制现实世界的丰富内容,如图像、人类语言和音乐。它的灵感来自博弈论:两个模型,一个生成器和一个批评家,在相互竞争的同时使彼此更强大。然而,训练GAN模型是相当具有挑战性的,因为人们面临着训练不稳定或收敛失败等问题。在这里,我想解释一下生成对抗网络框架背后的数学原理,为什么很难训练,最后介绍一个旨在解决训练难点的GAN修改版本。原创 2024-06-14 20:43:21 · 3028 阅读 · 0 评论 -
从GAN到WGAN(01/2)
生成对抗网络 (GAN) 在许多生成任务中显示出巨大的效果,以复制现实世界的丰富内容,如图像、人类语言和音乐。它的灵感来自博弈论:两个模型,一个生成器和一个批评家,在相互竞争的同时使彼此更强大。然而,训练GAN模型是相当具有挑战性的,因为人们面临着训练不稳定或收敛失败等问题。在这里,我想解释一下生成对抗网络框架背后的数学原理,为什么很难训练,最后介绍一个旨在解决训练难点的GAN修改版本。原创 2024-06-09 15:03:29 · 2344 阅读 · 2 评论 -
Pytorch手把手实作-Generative Adversarial Network (GAN)
前言废话免了,会进来看文章内容的只有四种人:1. 只想知道皮毛,GAN在干什么的 2. 想知道细节怎么把GAN训练起来;3. 收藏在收藏夹或是书签当作有看过了;4. 上课上到一定要点点进来。原创 2024-06-08 14:56:11 · 2387 阅读 · 0 评论 -
GAN网络理论和实验(二)
生成对抗网络(GAN) 是一种神经网络,可以生成与人类产生的内容类似的材料,例如图像、音乐、语音或文本。近年来,GAN 一直是一个活跃的研究课题。Facebook 的 AI 研究总监 Yann LeCun 称对抗训练是机器学习领域 “*过去 10 年最有趣的想法*” 。下面,您将在实现自己的两个生成模型之前了解 GAN 的工作原理。原创 2024-06-07 17:16:24 · 2235 阅读 · 0 评论 -
GAN网络理论和实验(一)
对发布于2014年的关于GAN的原始描述,我们精读此文,对原始的GAN网络概念进行追溯,对于概念的原始解读,是grasp该模型的最扎实依据。本文力图尊重原著的意图,适当加入读书笔记。在该文的续文中,将介绍实际用处和结果。原创 2024-06-07 14:02:10 · 1825 阅读 · 0 评论 -
深度Q-Learning在算法交易中的应用
如果我们让巴甫洛夫的狗接受强化学习训练,而不是猴子来选择最佳投资组合策略,会怎么样?在本文中,强化学习 (RL) 是一种机器学习技术,智能体在不确定的环境中学习动作,以最大化其价值。智能体从其操作的结果中学习,而无需使用特定于任务的规则进行显式编程,原创 2024-04-18 00:09:00 · 2013 阅读 · 0 评论 -
混合离散-连续几何深度学习
现有的球面卷积神经网络 (CNN) 框架既可计算可扩展又可旋转等变。连续方法捕获旋转等方差,但通常对计算要求过高。离散方法提供更有利的计算性能,但代价是等方差。我们开发了一种混合离散-连续 (DISCO) 群卷积,该卷积同时是等变的,并且在计算上可扩展到高分辨率。这种方法在许多基准密集预测任务上实现了最先进的 (SOTA) 性能。(更多细节可以在我们的ICLR论文中找到 DISCO卷积的可扩展和等变球形CNN。原创 2024-03-20 14:33:55 · 2195 阅读 · 0 评论 -
[GPT概念-02] — 预训练、微调和不同的用例应用
在之前的博客中,我们研究了生成式预训练转换器的整个概述。现在让我们看看关于预训练、微调和不同用例应用的超级重要主题。原创 2024-03-19 12:24:46 · 2600 阅读 · 0 评论 -
迈向生成式几何 AI
近年来,能动人工智能取得了显著的进步,使机器能够生成图像、文本甚至音乐。然而,仍然缺少一些数据模式。那就是几何事物的生成。本篇注意这个事情并给出观点。原创 2024-03-18 14:56:59 · 2544 阅读 · 11 评论 -
循环生成对抗网络(CycleGAN)
循环生成对抗网络(CycleGAN)是一种训练深度卷积神经网络以执行图像到图像翻译任务的方法。网络使用不成对的数据集学习输入和输出图像之间的映射。原创 2023-12-31 19:12:30 · 6280 阅读 · 2 评论 -
第 4 部分 — 增强LLM的安全性:对越狱的严格数学检验
越狱大型语言模型 (LLM)(例如 GPT-4)的概念代表了人工智能领域的一项艰巨挑战。这一过程需要对这些先进模型进行战略操纵,以超越其预先定义的道德准则或运营边界。在这篇博客中,我的目的是剖析数学的复杂性,并为越狱提供实用的数学工具,从而丰富我们对这种现象的理解。原创 2023-12-11 09:24:52 · 3477 阅读 · 0 评论
分享