深度学习
文章平均质量分 93
无水先生
擅长数学,能熟练应用泛函分析、统计学、随机过程、逼近论、微分几何、非欧几何(双曲、共形)等数学理论,有数学建模能力。从事图像处理二十年以上,从事人工智能行业10年以上;在船舶、通信、铁路、教育等行业开发软件产品。
展开
-
大型语言模型的工作原理(LLM:从零学起)
这是我们谈论LLM系列的第二篇文章。在本文中,我们旨在为大型语言模型 (LLM) 的运行方式提供易于理解的解释。原创 2024-06-04 08:17:42 · 2327 阅读 · 0 评论 -
深度学习运算:CUDA 编程简介
如今,当我们谈论深度学习时,通常会将其实现与利用 GPU 来提高性能联系起来。GPU(图形处理单元)最初设计用于加速图像、2D 和 3D 图形的渲染。然而,由于它们能够执行许多并行操作,因此它们的实用性超出了深度学习等应用程序。原创 2024-04-26 11:39:34 · 2632 阅读 · 8 评论 -
使用 Python 的 LSTM 进行股市预测
在本教程中,您将了解如何使用称为长短期记忆的时间序列模型。 LSTM 模型非常强大,尤其是在设计上保留长期记忆,正如您稍后将看到的。您将在本教程中解决以下主题:了解为什么您需要能够预测股价走势;下载数据 - 您将使用从雅虎财经收集的股票市场数据;分割训练测试数据并执行一些数据标准化;回顾并应用一些可用于一步预测的平均技术;激发并简要讨论LSTM 模型,因为它可以提前预测不止一步;利用当前数据预测和可视化未来股市原创 2024-04-08 09:26:51 · 3416 阅读 · 0 评论 -
球面数据的几何深度学习--球形 CNN
球面数据的几何深度学习--球形 CNN。通过对物理世界的平移对称性进行编码,卷积神经网络 (CNN) 彻底改变了计算机视觉。原创 2024-03-22 14:40:25 · 2361 阅读 · 1 评论 -
反向传播 — 简单解释
关于反向传播,我有一个精雕细刻的案例计划,但是实现了一半,目前没有顾得上继续充实,就拿论文的叙述这里先起个头,我后面将修改和促进此文的表述质量。原创 2024-03-13 16:16:59 · 2663 阅读 · 0 评论 -
深度神经网络联结主义的本质
在新兴的人工智能 (AI) 领域,深度神经网络 (DNN) 是一项里程碑式的成就,突破了机器学习、模式识别和认知模拟的界限。这一技术奇迹的核心是一个与认知科学本身一样古老的思想:联结主义。本文深入探讨了联结主义的基本原理,探讨了它对深层神经网络的发展和功能的影响,并说明了它在模拟反映人类智能的复杂认知任务中的重要性。原创 2024-03-01 00:08:43 · 2764 阅读 · 1 评论 -
探索前景:机器学习中常见优化算法的比较分析
优化算法在机器学习和深度学习中至关重要,可以最小化损失函数,从而改善模型的预测。每个优化器都有其独特的方法来导航损失函数的复杂环境以找到最小值。本文探讨了一些最常见的优化算法,包括 Adadelta、Adagrad、Adam、AdamW、SparseAdam、Adamax、ASGD、LBFGS、NAdam、RAdam、RMSprop、Rprop 和 SGD,并提供了对其机制、优势和应用的见解。原创 2024-02-29 13:41:42 · 2548 阅读 · 1 评论 -
【深度学习】SSD 神经网络:彻底改变目标检测
(SSD) 是一项关键创新,尤其是在物体检测领域。在 SSD 出现之前,对象检测主要通过两阶段过程执行,首先识别感兴趣的区域,然后将这些区域分类为对象类别。这种方法虽然有效,但计算量大且速度慢,限制了其在实时场景中的适用性。SSD 的推出标志着一个重大的飞跃,提供了以前无法实现的速度、准确性和效率的融合。本文深入探讨了 SSD 神经网络的架构、优势、应用和影响,阐明了其在目标检测技术发展中作为基石的作用。原创 2024-02-23 00:24:51 · 2829 阅读 · 2 评论 -
基尼杂质与基尼重要性与平均减少杂质的讨论
基尼系数是信息熵的泰勒级数简化版。因此,信息熵和基尼系数所表述的内涵是一致的。而绝对纯净的事物,信息熵(或基尼系数)是零,不纯的事物,基尼系数增加,但也不会超过0.5,因此,基尼系数是范围在0到0.5的纯洁度度量。原创 2024-02-17 11:18:20 · 2529 阅读 · 0 评论 -
协调尺度:特征缩放在机器学习中的重要作用
特征缩放是机器学习和数据分析预处理阶段的关键步骤,在优化各种算法的性能和效率方面起着至关重要的作用。本文深入探讨了特征缩放的本质,探讨了其不同的方法,强调了其重要性,并考虑了其在机器学习模型中的应用的实际意义。原创 2024-02-16 00:17:12 · 3636 阅读 · 4 评论 -
全卷积网络:革新图像分析
全卷积网络代表了图像分析领域的一种变革性方法。它们处理每个像素分类任务的能力在各种科学和工业领域开辟了新的途径。随着该领域研究的不断发展,FCN的潜在应用和改进似乎是无限的,预示着计算机视觉和人工智能的新时代原创 2024-01-25 20:45:46 · 2149 阅读 · 0 评论 -
如何从 Keras 中的深度学习目录加载大型数据集
数据集读取,使用、在磁盘上存储和构建图像数据集有一些约定,以便在训练和评估深度学习模型时能够快速高效地加载。本文介绍Keras 深度学习库中的ImageDataGenerator类等工具自动加载训练、测试和验证数据集。原创 2024-01-11 20:29:35 · 2835 阅读 · 4 评论 -
SqueezeNet:通过紧凑架构彻底改变深度学习
在深度学习领域,对效率和性能的追求往往会带来创新的架构。SqueezeNet 是神经网络设计的一项突破,体现了这种追求。本文深入研究了 SqueezeNet 的复杂性,探讨其独特的架构、设计背后的基本原理、应用及其对深度学习领域的影响。原创 2024-01-07 13:12:30 · 4843 阅读 · 2 评论
分享