博弈论和游戏开发
文章平均质量分 93
本栏目将针对AI的游戏策略进行研究;包括传统的决策系统、知识库、方法库等概念,还引入对抗网络、扩散模型、强化学习,可以说,是对现代游戏战略模型专门研究。
优惠券已抵扣
余额抵扣
还需支付
¥29.90
¥99.00
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
无水先生
擅长数学,能熟练应用泛函分析、统计学、随机过程、逼近论、微分几何、非欧几何(双曲、共形)等数学理论,有数学建模能力。从事图像处理二十年以上,从事人工智能行业10年以上;在船舶、通信、铁路、教育等行业开发软件产品。
展开
-
弥合人类与人工智能的知识差距:AlphaZero 中的概念发现和迁移(1)
人工智能(AI)系统取得了显着进步,达到了超人类的水平跨不同领域的表现。这为我们提供了一个机会,通过利用这些高性能人工智能系统中编码的隐藏知识来进一步加深人类知识并提高人类专家的表现。然而,这些知识通常很难提取,也可能很难理解或学习。在这里,我们通过提出一种新方法来证明这是可能的,该方法允许我们在 AlphaZero 中提取新的国际象棋概念,AlphaZero 是一个人工智能系统,可以在没有人类监督的情况下通过自我对弈掌握国际象棋游戏。我们的分析表明,AlphaZero 可能编码超出人类现有知识的知识,原创 2024-07-12 05:53:04 · 2596 阅读 · 0 评论 -
AlphaGo 的传奇故事
1997 年,IBM 的“深蓝”系统击败了国际象棋世界冠军加里·卡斯帕罗夫。当时,这场胜利被广泛誉为人工智能的里程碑。但事实证明,“深蓝”技术只对国际象棋有用,其他方面则无用。计算机科学并未经历一场革命。AlphaGo 这个围棋系统最近击败了历史上最强大的围棋选手之一,它会有什么不同吗?原创 2024-07-09 19:44:06 · 2040 阅读 · 0 评论 -
通过自我对弈掌握国际象棋和将棋 通用强化学习算法
国际象棋游戏是人工智能历史上研究最广泛的领域。最强大的程序基于复杂的搜索技术、特定领域的适应和手工评估函数的组合,这些函数已经被经过人类专家几十年的精炼。相比之下,AlphaGo Zero 程序最近,通过自我对弈的白板强化学习,在围棋游戏中取得了超人的表现。在本文中,我们将这种方法概括为单一的 AlphaZero 算法可以在以下方面实现超人的性能。原创 2024-07-08 14:50:23 · 1810 阅读 · 0 评论 -
Tabu Search — 温和介绍
最近,我参加了 Corsera 上的离散优化课程。我试图解决的问题之一是旅行商问题,即著名的 NP-Hard 优化问题。该课程讲解了如何使用几种算法解决几个实际问题,其中一种算法是禁忌搜索。今天,在这篇文章中,我将解释该算法并使用 Python 实现它来解决旅行商问题 TSP。原创 2024-07-07 00:38:04 · 2754 阅读 · 1 评论 -
什么是TABU搜索?
在应用博弈论完成游戏开发中,存在博弈树或图数据结构,在搜索图数据结构的时候,需要深度优先、广度优先,或者禁忌搜索 (TS),禁忌搜索还有是为alpha-one总算法服务的。本文专门介绍这种搜索算法,做为入门级知识。原创 2024-07-06 02:11:00 · 2374 阅读 · 0 评论 -
使用 AlphaZero 和 Tabu 搜索查找越来越大的极值图
人工智能的树和图的检索问题,一直是一个较头痛的问题。在AlphaZero开发棋类游戏中的博弈树搜索问题,本篇是一个相关论文,其中对图的顶点、边之间关系进行理论模型建设。下面且看其内容。原创 2024-07-05 13:23:20 · 1848 阅读 · 0 评论 -
AlphaGo 背后的人工智能:机器学习和神经网络
AlphaGo 的规则是学习而来的,而不是设计出来的,它运用机器学习以及多个神经网络来创建学习组件,使围棋水平更高。从与英国国家医疗服务体系的合作可以看出,AlphaGo 在其他领域也有着广阔的应用前景。原创 2024-07-04 16:10:53 · 2418 阅读 · 2 评论 -
博弈论:主导策略解析
正如我们所见,均衡主导策略解决方案概念可能是一个有用的工具。在囚徒困境中,一旦玩家 1 意识到自己有一个主导策略,他就不必考虑玩家 2 会做什么。玩家 1 知道他可以只发挥自己的主导策略,而且比发挥其他策略更好。所有玩家都具有主导策略的游戏仍然具有战略性,因为收益取决于其他玩家的行为,但最佳反应则不然。原创 2024-06-14 20:52:06 · 2022 阅读 · 0 评论 -
纳什均衡:博弈论中的运作方式、示例以及囚徒困境
博弈论者使用纳什均衡来分析多个决策者战略互动的结果。在战略互动中,每个决策者的结果取决于其他人的决策以及他们自己的决策。纳什思想背后的简单见解是,如果孤立地分析多个决策者的决策,就无法预测他们的选择。相反,我们必须问每个玩家在考虑到玩家对其他人的期望后会怎么做。纳什均衡要求玩家的选择是一致的:没有玩家希望在其他人做出决定的情况下撤销自己的决定。原创 2024-06-09 15:52:45 · 3038 阅读 · 0 评论
分享