一 环境:
spark-2.2.0;
hive-1.1.0;
scala-2.11.8;
hadoop-2.6.0-cdh-5.15.0;
jdk-1.8;
mongodb-2.4.10;
二.数据情况:
MongoDB数据格式
{
"_id" : ObjectId("5ba0569cafc9ec432bd310a3"),
"id" : 7,
"name" : "7mongoDBi am using mongodb now",
"location" : "shanghai",
"sex" : "male",
"position" : "big data platform engineer"
}
Hive普通表
create table mgtohive_2(
id string,
name string,
age string,
deptno string
)row format delimited fields terminated by '\t';
create table mgtohive_2(
id int,
name string,
location string,
sex string,
position string
)
row format delimited fields terminated by '\t';
Hive分区表
create table mg_hive_external(
id int,
name string,
location string,
position string
)
PARTITIONED BY(sex string)
row format delimited fields terminated by '\t';
三.Eclipse+Maven+Java 3.1 依赖:
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.11</artifactId>
<version>2.2.0</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-hive_2.11</artifactId>
<version>2.2.0</version>
</dependency>
<dependency>
<groupId>org.mongodb</groupId>
<artifactId>mongo-java-driver</artifactId>
<version>3.6.3</version>
</dependency>
<dependency>
<groupId>org.mongodb.spark</groupId>
<artifactId>mongo-spark-connector_2.11</artifactId>
<version>2.2.2</version>
</dependency>
3.2 代码:
package com.mobanker.mongo2hive.Mongo2Hive;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.sql.hive.HiveContext;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
import org.bson.Document;
import com.mongodb.spark.MongoSpark;
import java.io.File;
import java.util.ArrayList;
import java.util.List;
public class Mongo2Hive {
public static void main(String[] args) {
//spark 2.x
String warehouseLocation = new File("spark-warehouse").getAbsolutePath();
SparkSession spark = SparkSession.builder()
.master("local[2]")
.appName("SparkReadMgToHive")
.config("spark.sql.warehouse.dir", warehouseLocation)
.config("spark.mongodb.input.uri", "mongodb://10.40.20.47:27017/test_db.test_table")
.enableHiveSupport()
.getOrCreate();
JavaSparkContext sc = new JavaSparkContext(spark.sparkContext());
// spark 1.x
// JavaSparkContext sc = new JavaSparkContext(conf);
// sc.addJar("/Users/mac/zhangchun/jar/mongo-spark-connector_2.11-2.2.2.jar");
// sc.addJar("/Users/mac/zhangchun/jar/mongo-java-driver-3.6.3.jar");
// SparkConf conf = new SparkConf().setMaster("local[2]").setAppName("SparkReadMgToHive");
// conf.set("spark.mongodb.input.uri", "mongodb://127.0.0.1:27017/test.mgtest");
// conf.set("spark. serializer","org.apache.spark.serializer.KryoSerialzier");
// HiveContext sqlContext = new HiveContext(sc);
// //create df from mongo
// Dataset<Row> df = MongoSpark.read(sqlContext).load().toDF();
// df.select("id","name","name").show();
String querysql= "select id,name,location,sex,position from mgtohive_2 b";
String opType ="P";
SQLUtils sqlUtils = new SQLUtils();
List<String> column = sqlUtils.getColumns(querysql);
//create rdd from mongo
JavaRDD<Document> rdd = MongoSpark.load(sc);
//将Document转成Object
JavaRDD<Object> Ordd = rdd.map(new Function<Document, Object>() {
public Object call(Document document){
List list = new ArrayList();
for (int i = 0; i < column.size(); i++) {
list.add(String.valueOf(document.get(column.get(i))));
}
return list;
// return list.toString().replace("[","").replace("]","");
}
});
System.out.println(Ordd.first());
//通过编程方式将RDD转成DF
List ls= new ArrayList();
for (int i = 0; i < column.size(); i++) {
ls.add(column.get(i));
}
String schemaString = ls.toString().replace("[","").replace("]","").replace(" ","");
System.out.println(schemaString);
List<StructField> fields = new ArrayList<StructField>();
for (String fieldName : schemaString.split(",")) {
StructField field = DataTypes.createStructField(fieldName, DataTypes.StringType, true);
fields.add(field);
}
StructType schema = DataTypes.createStructType(fields);
JavaRDD<Row> rowRDD = Ordd.map((Function<Object, Row>) record -> {
List fileds = (List) record;
// String[] attributes = record.toString().split(",");
return RowFactory.create(fileds.toArray());
});
Dataset<Row> df = spark.createDataFrame(rowRDD,schema);
//将DF写入到Hive中
//选择Hive数据库
spark.sql("use datalake");
//注册临时表
df.registerTempTable("mgtable");
if ("O".equals(opType.trim())) {
System.out.println("数据插入到Hive ordinary table");
Long t1 = System.currentTimeMillis();
spark.sql("insert into mgtohive_2 " + querysql + " " + "where b.id not in (select id from mgtohive_2)");
System.out.println("insert into mgtohive_2 " + querysql + " ");
Long t2 = System.currentTimeMillis();
System.out.println("共耗时:" + (t2 - t1) / 60000 + "分钟");
}else if ("P".equals(opType.trim())) {
System.out.println("数据插入到Hive dynamic partition table");
Long t3 = System.currentTimeMillis();
//必须设置以下参数 否则报错
spark.sql("set hive.exec.dynamic.partition.mode=nonstrict");
//sex为分区字段 select语句最后一个字段必须是sex
spark.sql("insert into mg_hive_external partition(sex) select id,name,location,position,sex from mgtable b where b.id not in (select id from mg_hive_external)");
Long t4 = System.currentTimeMillis();
System.out.println("共耗时:"+(t4 -t3)/60000+ "分钟");
}
spark.stop();
}
}
工具类:
package com.mobanker.mongo2hive.Mongo2Hive;
import java.util.ArrayList;
import java.util.List;
public class SQLUtils {
public List<String> getColumns(String querysql){
List<String> column = new ArrayList<String>();
String tmp = querysql.substring(querysql.indexOf("select") + 6,
querysql.indexOf("from")).trim();
if (tmp.indexOf("*") == -1){
String cols[] = tmp.split(",");
for (String c:cols){
column.add(c);
}
}
return column;
}
public String getTBname(String querysql){
String tmp = querysql.substring(querysql.indexOf("from")+4).trim();
int sx = tmp.indexOf(" ");
if(sx == -1){
return tmp;
}else {
return tmp.substring(0,sx);
}
}
}
四 错误解决办法:
下载cdh集群Hive的hive-site.xml文件,在项目中新建resources文件夹,讲hive-site.xml配置文件放入其中:
五 执行情况:
耗时14mins,写入hive表10398582条数据:

3945

被折叠的 条评论
为什么被折叠?



