转载至:http://blog.liubijian.com/php_memcache_code_analysis.html 前段时间,因为一个项目的关系,研究了php通过调用memcache和memcached PECL扩展库的接口存储到分布式缓存服务器的机制,在此做我根据他们各自的源码进行分析,希望能对这方面感兴趣的人有些帮助。 本篇文章我会针对php和memcache扩展库的交互根据源码展开分析。 PHP调用memcache的接口通常会是如下过程: <?php $mmc = new Memcache(); $mmc->addServer('node1', 11211); $mmc->addServer('node2', 11211, MemcacheConfig::MEMCACHE_PERSISTENT, 2); $mmc->set('key', 'value'); echo $mmc->get('key'); $mmc->delete('key'); 短短几行代码,一个缓存key的生命周期就已经完整层现。从Memcache的初始化,到addServer添加两个服务器节点,接着set一个key到服务器上,然后get到这个key输出,最后delete这个key。在这个生命周期里,Memcache在底层究竟做了哪些事情,保证了数据存储服务器的均匀分布,数据的完整性? 接下来,我会根据上述生命周期的顺序,循序渐进的分析(由于主题是分布式算法的分析,所以接下来不相干的代码我会略去,很多分析我会直接备注在源码上)。 1. Memcache的初始化 对应PHP的代码:$mmc = new Memcache(); 对应C的代码:// Memcache类对应的方法名已经实际在c中实现过程的函数名,在接下来的分析中会用到。忽略不会分析到的方法。 static zend_function_entry php_memcache_class_functions[] = { PHP_FALIAS(addserver, memcache_add_server, NULL) PHP_FALIAS(set, memcache_set, NULL) PHP_FALIAS(get, memcache_get, NULL) PHP_FALIAS(delete, memcache_delete, NULL) ...... }; PHP_MINIT_FUNCTION(memcache) { // 初始化Memcache类实体,给类定在php空间中的调用名称以及类所拥有的方法 zend_class_entry memcache_class_entry; INIT_CLASS_ENTRY(memcache_class_entry, "Memcache", php_memcache_class_functions); memcache_class_entry_ptr = zend_register_internal_class(&memcache_class_entry TSRMLS_CC); ...... } 以上过程是在Module Initialization的环节已经做好,在new的过程中,并无其余处理。 2. 添加缓存服务器,使之成为分布式存储 对应PHP的代码:$mmc->addServer('node1', 11211); $mmc->addServer('node2', 11211, MemcacheConfig::MEMCACHE_PERSISTENT, 2); 由上面的php_memcache_class_functions结构可以看出,addServer方法对应的是memcache_add_server函数,因此对应C的代码:PHP_FUNCTION(memcache_add_server) { zval **connection, *mmc_object = getThis(), *failure_callback = NULL; // 整个Memcache中最重要的一个结构mmc_pool_t mmc_pool_t *pool; // 当前新添服务器的结构变量 mmc_t *mmc; ...... // 如果pool之前没有初始化过,则初始化 if (zend_hash_find(Z_OBJPROP_P(mmc_object), "connection", sizeof("connection"), (void **) &connection) == FAILURE) { // 调用mmp_pool_new完成初始化 pool = mmc_pool_new(TSRMLS_C); ...... } else { ...... } //将新增服务器添加到pool中 mmc_pool_add(pool, mmc, weight); RETURN_TRUE; } 来看下mmc_pool_t结构的定义:typedef struct mmc_pool { mmc_t **servers; // 所有服务器的状态 int num_servers; // 服务器数量 mmc_t **requests; // 根据get的array key请求顺序返回的服务器数组状态 int compress_threshold; // 待存储的数据压缩的下限值 double min_compress_savings; // 待存储的数据最小的压缩百分比 zend_bool in_free; // 标记该pool是否被释放 mmc_hash_t *hash; // hash策略容器 void *hash_state; // hash函数 } mmc_pool_t; 然后我们看下mmc_hash_t的结构,再接下去的分析中会用到:// 结构定义中包含了四种抽象函数,作为基本结构,用于定义子结构 typedef struct mmc_hash { mmc_hash_create_state create_state; // 创建hash策略状态,主要是接纳了hash函数算法 mmc_hash_free_state free_state; // 释放hash策略状态 mmc_hash_find_server find_server; // 根据key和分布式算法定位到某台服务器 mmc_hash_add_server add_server; // 根据hash策略、算法以及权重值添加服务器资源 } mmc_hash_t; 接着我们追踪memcache_add_server函数中的mmc_pool_new函数调用方法:mmc_pool_t *mmc_pool_new(TSRMLS_D) /* {{{ */ { // 初始化一些基本的状态 mmc_pool_t *pool = emalloc(sizeof(mmc_pool_t)); pool->num_servers = 0; pool->compress_threshold = 0; pool->in_free = 0; pool->min_compress_savings = MMC_DEFAULT_SAVINGS; // 初始化分布式哈希算法 mmc_pool_init_hash(pool TSRMLS_CC); return pool; } 现在初始化hash算法已经逐渐显露,继续追踪mmc_pool_init_hash函数:static void mmc_pool_init_hash(mmc_pool_t *pool TSRMLS_DC) /* {{{ */ { mmc_hash_function hash; // 初始化hash函数 // 根据php.ini中的memcache.hash_strategy配置选择hash存储策略,默认为标准hash存储策略 switch (MEMCACHE_G(hash_strategy)) { case MMC_CONSISTENT_HASH: pool->hash = &mmc_consistent_hash; // 采用持久化hash存储策略 break; default: pool->hash = &mmc_standard_hash; // 采用标准hash存储策略 } // 根据php.ini中的memcache.hash_function配置选择hash函数,默认为crc32算法 switch (MEMCACHE_G(hash_function)) { case MMC_HASH_FNV1A: hash = &mmc_hash_fnv1a; // 采用fnv1a算法 break; default: hash = &mmc_hash_crc32; // 采用crc32算法 } // hash策略中根据选择的hash函数创建对应的状态 pool->hash_state = pool->hash->create_state(hash); } 根据上面的两个switch可以知道,在create_state的时候,是有两种策略选择的可能性,接着传入的hash参数也存在两种可能性,这里我先分析标准hash存储策略,以及对应的两种hash算法,然后再分析持久化hash策略。 先看下mmc_consistent_hash结构:// 根据mmc_hash_t的定义包含了四种具体函数实现 mmc_hash_t mmc_standard_hash = { mmc_standard_create_state, mmc_standard_free_state, mmc_standard_find_server, mmc_standard_add_server }; 由上可知,pool->hash->create_state的函数调用实际是对mmc_standard_create_state的函数调用,继续看mmc_standard_create_state函数代码的实现:// hash策略状态 typedef struct mmc_standard_state { int num_servers; // 服务器数量 mmc_t **buckets; // 哈希桶,和权重值相关 int num_buckets; // 哈系桶的数量 mmc_hash_function hash; // hash算法 } mmc_standard_state_t; void *mmc_standard_create_state(mmc_hash_function hash) /* {{{ */ { // 初始化状态 mmc_standard_state_t *state = emalloc(sizeof(mmc_standard_state_t)); memset(state, 0, sizeof(mmc_standard_state_t)); // 选择的hash函数赋给hash属性 state->hash = hash; return state; } crc的算法实现:static unsigned int mmc_hash_crc32(const char *key, int key_len) /* CRC32 hash {{{ */ { unsigned int crc = ~0; int z; for (z=0; z<key_len; z++) { CRC32(crc, key[z]); } return ~crc; } 有关CRC32再深入的实现可以参考Cyclic redundancy check 然后来看看fnv算法实现:/* 32 bit magic FNV-1a prime and init */ #define FNV_32_PRIME 0x01000193 #define FNV_32_INIT 0x811c9dc5 static unsigned int mmc_hash_fnv1a(const char *key, int key_len) /* FNV-1a hash {{{ */ { unsigned int hval = FNV_32_INIT; int z; for (z=0; z<key_len; z++) { hval ^= (unsigned int)key[z]; hval *= FNV_32_PRIME; } return hval; } 具体fnv算法的深入实现可以参考Fowler–Noll–Vo hash function 最后我们看看mmc_consistent_hash结构:mmc_hash_t mmc_consistent_hash = { mmc_consistent_create_state, mmc_consistent_free_state, mmc_consistent_find_server, mmc_consistent_add_server }; 一样是四个函数,看下对应的create_state中的mmc_consistent_create_state的实现:/* number of precomputed buckets, should be power of 2 */ #define MMC_CONSISTENT_BUCKETS 1024 typedef struct mmc_consistent_point { mmc_t *server; // 服务器状态 unsigned int point; // 对应的指针 } mmc_consistent_point_t; typedef struct mmc_consistent_state { int num_servers; // 服务器数量 mmc_consistent_point_t *points; // 持久化服务器指针 int num_points; // 指针数量 mmc_t *buckets[MMC_CONSISTENT_BUCKETS]; // 哈希桶 int buckets_populated; // 标记哈希桶是否计算过 mmc_hash_function hash; // hash函数 } mmc_consistent_state_t; void *mmc_consistent_create_state(mmc_hash_function hash) /* {{{ */ { // 初始化state mmc_consistent_state_t *state = emalloc(sizeof(mmc_consistent_state_t)); memset(state, 0, sizeof(mmc_consistent_state_t)); // 将hash函数赋值给hash属性 state->hash = hash; return state; } 至此,memcache_add_server中mmc_pool_new函数流程结束,接着来看mmc_pool_add函数:void mmc_pool_add(mmc_pool_t *pool, mmc_t *mmc, unsigned int weight) /* {{{ */ { /* add server and a preallocated request pointer */ if (pool->num_servers) { pool->servers = erealloc(pool->servers, sizeof(mmc_t *) * (pool->num_servers + 1)); pool->requests = erealloc(pool->requests, sizeof(mmc_t *) * (pool->num_servers + 1)); } else { pool->servers = emalloc(sizeof(mmc_t *)); pool->requests = emalloc(sizeof(mmc_t *)); } pool->servers[pool->num_servers] = mmc; pool->num_servers++; // 根据pool状态,当前要添加的服务器状态和权重调用add_server函数 pool->hash->add_server(pool->hash_state, mmc, weight); } 由上面的说明可知add_server在标准hash模式下对应mmc_standard_add_server函数:void mmc_standard_add_server(void *s, mmc_t *mmc, unsigned int weight) /* {{{ */ { mmc_standard_state_t *state = s; int i; // 哈希桶初始化或重新分配相应的权重数值对应的空间 if (state->num_buckets) { state->buckets = erealloc(state->buckets, sizeof(mmc_t *) * (state->num_buckets + weight)); } else { state->buckets = emalloc(sizeof(mmc_t *) * (weight)); } // 在某个区间内为哈希桶赋予服务器状态 for (i=0; i<weight; i++) { buckets[state->num_buckets + i] = mmc; } state->num_buckets += weight; state->num_servers++; } 在持久化hash模式下,对应的是mmc_consistent_add_server函数:#define MMC_CONSISTENT_POINTS 160 /* points per server */ void mmc_consistent_add_server(void *s, mmc_t *mmc, unsigned int weight) /* {{{ */ { mmc_consistent_state_t *state = s; int i, key_len, points = weight * MMC_CONSISTENT_POINTS; /* buffer for "host:port-i/0" */ char *key = emalloc(strlen(mmc->host) + MAX_LENGTH_OF_LONG * 2 + 3); /* add weight * MMC_CONSISTENT_POINTS number of points for this server */ state->points = erealloc(state->points, sizeof(mmc_consistent_point_t) * (state->num_points + points)); // 将区块内的server赋予当前服务器状态,point赋予hash函数处理后的值 for (i=0; i<points; i++) { key_len = sprintf(key, "%s:%d-%d", mmc->host, mmc->port, i); state->points[state->num_points + i].server = mmc; state->points[state->num_points + i].point = state->hash(key, key_len); MMC_DEBUG(("mmc_consistent_add_server: key %s, point %lu", key, state->points[state->num_points + i].point)); } state->num_points += points; state->num_servers++; // 新增加服务器后需重新计算buckets顺序 state->buckets_populated = 0; efree(key); } 以上代码有持久化hash算法的赋值实现,具体深入的了解请看Consistent hashing和国内大侠charlee翻译的小日本的文章memcached全面剖析–PDF总结篇。 Consistent hashing 算法最大的特点是当你的缓存服务器数量变更的时候,它能够最大化的保留原有的缓存不变,而不需要重新分布原有缓存的服务器位置。 至此,整个memcache_add_server流程结束。 3. 向缓存服务器保存数据 对应PHP的代码:$mmc->set('key', 'value'); 由上面的分析可知,set方法对应的是memcache_set函数:/* {{{ proto bool memcache_set( object memcache, string key, mixed var [, int flag [, int expire ] ] ) Sets the value of an item. Item may exist or not */ PHP_FUNCTION(memcache_set) { // Memcache对象中的add,set和replace皆会走该函数 php_mmc_store(INTERNAL_FUNCTION_PARAM_PASSTHRU, "set", sizeof("set") - 1); } 看php_mmc_store函数:static void php_mmc_store(INTERNAL_FUNCTION_PARAMETERS, char *command, int command_len) /* {{{ */ { mmc_pool_t *pool; ...... // 获得pool if (!mmc_get_pool(mmc_object, &pool TSRMLS_CC) || !pool->num_servers) { RETURN_FALSE; } // 对不同的存储的值类型进行不同的处理 switch (Z_TYPE_P(value)) { // 字符串类型 case IS_STRING: result = mmc_pool_store( pool, command, command_len, key_tmp, key_tmp_len, flags, expire, Z_STRVAL_P(value), Z_STRLEN_P(value) TSRMLS_CC); break; // 长整型,浮点型,布尔型 case IS_LONG: case IS_DOUBLE: case IS_BOOL: { ...... result = mmc_pool_store( pool, command, command_len, key_tmp, key_tmp_len, flags, expire, Z_STRVAL(value_copy), Z_STRLEN(value_copy) TSRMLS_CC); zval_dtor(&value_copy); break; } // 默认为数组类型 default: { ...... result = mmc_pool_store( pool, command, command_len, key_tmp, key_tmp_len, flags, expire, buf.c, buf.len TSRMLS_CC); } } ...... } 由上代码可以看出,存储数据主要是交由mmc_pool_store处理:int mmc_pool_store(mmc_pool_t *pool, const char *command, int command_len, const char *key, int key_len, int flags, int expire, const char *value, int value_len TSRMLS_DC) /* {{{ */ { /* 该省略过程处理数据压缩,处理待发送的请求数据 */ ...... // 通过key确定待保存的服务器 while (result < 0 && (mmc = mmc_pool_find(pool, key, key_len TSRMLS_CC)) != NULL) { // 向缓存服务器发送请求,保存数据 if ((result = mmc_server_store(mmc, request, request_len TSRMLS_CC)) < 0) { mmc_server_failure(mmc TSRMLS_CC); } } if (key_copy != NULL) { efree(key_copy); } if (data != NULL) { efree(data); } efree(request); return result; } 接着我们看下mmc_pool_find是处理的#define mmc_pool_find(pool, key, key_len) / pool->hash->find_server(pool->hash_state, key, key_len) 原来是再次多态调用了find_server函数,由之前的分析可以得知find_server在标准hash模式中的函数为mmc_standard_find_server,在持久化hash模式中的函数为mmc_consistent_find_server,一样先看mmc_standard_find_servermmc_t *mmc_standard_find_server(void *s, const char *key, int key_len TSRMLS_DC) /* {{{ */ { mmc_standard_state_t *state = s; mmc_t *mmc; if (state->num_servers > 1) { // 用设定的hash函数算法,找到对应的服务器 unsigned int hash = mmc_hash(state, key, key_len), i; mmc = state->buckets[hash % state->num_buckets]; // 如果获取到的服务器状态有问题,则重新hash遍历寻找到可用的缓存服务器为止 for (i=0; !mmc_open(mmc, 0, NULL, NULL TSRMLS_CC) && MEMCACHE_G(allow_failover) && i<MEMCACHE_G(max_failover_attempts); i++) { char *next_key = emalloc(key_len + MAX_LENGTH_OF_LONG + 1); int next_len = sprintf(next_key, "%d%s", i+1, key); MMC_DEBUG(("mmc_standard_find_server: failed to connect to server '%s:%d' status %d, trying next", mmc->host, mmc->port, mmc->status)); hash += mmc_hash(state, next_key, next_len); mmc = state->buckets[hash % state->num_buckets]; efree(next_key); } } else { mmc = state->buckets[0]; mmc_open(mmc, 0, NULL, NULL TSRMLS_CC); } return mmc->status != MMC_STATUS_FAILED ? mmc : NULL; } 再看mmc_consistent_find_servermmc_t *mmc_consistent_find_server(void *s, const char *key, int key_len TSRMLS_DC) /* {{{ */ { mmc_consistent_state_t *state = s; mmc_t *mmc; if (state->num_servers > 1) { unsigned int i, hash = state->hash(key, key_len); // 如果哈希桶没有进行过排序,则进行圆环排序操作 if (!state->buckets_populated) { mmc_consistent_populate_buckets(state); } mmc = state->buckets[hash % MMC_CONSISTENT_BUCKETS]; // 如果获取到的服务器状态有问题,则重新hash遍历寻找到可用的缓存服务器为止 for (i=0; !mmc_open(mmc, 0, NULL, NULL TSRMLS_CC) && MEMCACHE_G(allow_failover) && i<MEMCACHE_G(max_failover_attempts); i++) { char *next_key = emalloc(key_len + MAX_LENGTH_OF_LONG + 1); int next_len = sprintf(next_key, "%s-%d", key, i); MMC_DEBUG(("mmc_consistent_find_server: failed to connect to server '%s:%d' status %d, trying next", mmc->host, mmc->port, mmc->status)); hash = state->hash(next_key, next_len); mmc = state->buckets[hash % MMC_CONSISTENT_BUCKETS]; efree(next_key); } } else { mmc = state->points[0].server; mmc_open(mmc, 0, NULL, NULL TSRMLS_CC); } return mmc->status != MMC_STATUS_FAILED ? mmc : NULL; } // 持久化哈希算法的核心部分 static void mmc_consistent_populate_buckets(mmc_consistent_state_t *state) /* {{{ */ { unsigned int z, step = 0xffffffff / MMC_CONSISTENT_BUCKETS; qsort((void *)state->points, state->num_points, sizeof(mmc_consistent_point_t), mmc_consistent_compare); for (z=0; z<MMC_CONSISTENT_BUCKETS; z++) { state->buckets[z] = mmc_consistent_find(state, step * z); } state->buckets_populated = 1; } static int mmc_consistent_compare(const void *a, const void *b) /* {{{ */ { if (((mmc_consistent_point_t *)a)->point < ((mmc_consistent_point_t *)b)->point) { return -1; } if (((mmc_consistent_point_t *)a)->point > ((mmc_consistent_point_t *)b)->point) { return 1; } return 0; } static mmc_t *mmc_consistent_find(mmc_consistent_state_t *state, unsigned int point) /* {{{ */ { int lo = 0, hi = state->num_points - 1, mid; while (1) { /* point is outside interval or lo >= hi, wrap-around */ if (point <= state->points[lo].point || point > state->points[hi].point) { return state->points[lo].server; } /* test middle point */ mid = lo + (hi - lo) / 2; MMC_DEBUG(("mmc_consistent_find: lo %d, hi %d, mid %d, point %u, midpoint %u", lo, hi, mid, point, state->points[mid].point)); /* perfect match */ if (point <= state->points[mid].point && point > (mid ? state->points[mid-1].point : 0)) { return state->points[mid].server; } /* too low, go up */ if (state->points[mid].point < point) { lo = mid + 1; } else { hi = mid - 1; } } } 至此,memcache_set过程结束。 4. 向缓存服务器获得已保存的数据 对应PHP的代码:echo $mmc->get('key'); 由上面的分析可知,get方法对应的是memcache_get函数:PHP_FUNCTION(memcache_get) { ...... // 获得pool if (!mmc_get_pool(mmc_object, &pool TSRMLS_CC) || !pool->num_servers) { RETURN_FALSE; } // 当key不为数组的情况下处理 if (Z_TYPE_P(zkey) != IS_ARRAY) { // 检查key的合法性 if (mmc_prepare_key(zkey, key, &key_len TSRMLS_CC) == MMC_OK) { // 获取key获取value if (mmc_exec_retrieval_cmd(pool, key, key_len, &return_value, flags TSRMLS_CC) < 0) { zval_dtor(return_value); RETVAL_FALSE; } } else { RETVAL_FALSE; } // 为数组的情况下处理 } else if (zend_hash_num_elements(Z_ARRVAL_P(zkey))){ //根据数据key获取数组值 if (mmc_exec_retrieval_cmd_multi(pool, zkey, &return_value, flags TSRMLS_CC) < 0) { zval_dtor(return_value); RETVAL_FALSE; } } else { RETVAL_FALSE; } } 接着看mmc_exec_retrieval_cmd和mmc_exec_retrieval_cmd_multi函数:int mmc_exec_retrieval_cmd(mmc_pool_t *pool, const char *key, int key_len, zval **return_value, zval *return_flags TSRMLS_DC) /* {{{ */ { mmc_t *mmc; char *command, *value; int result = -1, command_len, response_len, value_len, flags = 0; MMC_DEBUG(("mmc_exec_retrieval_cmd: key '%s'", key)); command_len = spprintf(&command, 0, "get %s", key); // 遍历寻找到key对应的value值 while (result < 0 && (mmc = mmc_pool_find(pool, key, key_len TSRMLS_CC)) != NULL) { ...... } if (return_flags != NULL) { zval_dtor(return_flags); ZVAL_LONG(return_flags, flags); } efree(command); return result; } static int mmc_exec_retrieval_cmd_multi(mmc_pool_t *pool, zval *keys, zval **return_value, zval *return_flags TSRMLS_DC) /* {{{ */ { ...... do { result_status = num_requests = 0; zend_hash_internal_pointer_reset_ex(Z_ARRVAL_P(keys), &pos); // 遍历key得到所有key对应的服务器资源存入pool->requests中 while (zend_hash_get_current_data_ex(Z_ARRVAL_P(keys), (void **)&zkey, &pos) == SUCCESS) { if (mmc_prepare_key(*zkey, key, &key_len TSRMLS_CC) == MMC_OK) { /* schedule key if first round or if missing from result */ if ((!i || !zend_hash_exists(Z_ARRVAL_PP(return_value), key, key_len)) && // 根据key寻找到服务器 (mmc = mmc_pool_find(pool, key, key_len TSRMLS_CC)) != NULL) { if (!(mmc->outbuf.len)) { smart_str_appendl(&(mmc->outbuf), "get", sizeof("get")-1); pool->requests[num_requests++] = mmc; } smart_str_appendl(&(mmc->outbuf), " ", 1); smart_str_appendl(&(mmc->outbuf), key, key_len); MMC_DEBUG(("mmc_exec_retrieval_cmd_multi: scheduled key '%s' for '%s:%d' request length '%d'", key, mmc->host, mmc->port, mmc->outbuf.len)); } } zend_hash_move_forward_ex(Z_ARRVAL_P(keys), &pos); } ...... } while (result_status < 0 && MEMCACHE_G(allow_failover) && i++ < MEMCACHE_G(max_failover_attempts)); ...... return result_status; } 由上可见分布式hash的核心函数皆为mmc_pool_find,首先找到key对应的服务器资源,然后根据服务器资源请求数据。 至此,memcache_get的过程结束。 5.向缓存服务器删除已保存的数据 对应的php代码:$mmc->delete('key'); 由之前的分析可知,delete对应的为memcache_delete:/* {{{ proto bool memcache_delete( object memcache, string key [, int expire ]) Deletes existing item */ PHP_FUNCTION(memcache_delete) { mmc_t *mmc; mmc_pool_t *pool; int result = -1, key_len; zval *mmc_object = getThis(); char *key; long time = 0; char key_tmp[MMC_KEY_MAX_SIZE]; unsigned int key_tmp_len; if (mmc_object == NULL) { if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "Os|l", &mmc_object, memcache_class_entry_ptr, &key, &key_len, &time) == FAILURE) { return; } } else { if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "s|l", &key, &key_len, &time) == FAILURE) { return; } } if (!mmc_get_pool(mmc_object, &pool TSRMLS_CC) || !pool->num_servers) { RETURN_FALSE; } if (mmc_prepare_key_ex(key, key_len, key_tmp, &key_tmp_len TSRMLS_CC) != MMC_OK) { RETURN_FALSE; } // 先获得服务器资源 while (result < 0 && (mmc = mmc_pool_find(pool, key_tmp, key_tmp_len TSRMLS_CC)) != NULL) { // 根据资源向缓存服务器发送请求删除存储的数据 if ((result = mmc_delete(mmc, key_tmp, key_tmp_len, time TSRMLS_CC)) < 0) { mmc_server_failure(mmc TSRMLS_CC); } } if (result > 0) { RETURN_TRUE; } RETURN_FALSE; } /* }}} */ 至此,memcache_delete过程结束。 |
php与memcached服务器交互的分布式实现源码分析 [memcache版]
最新推荐文章于 2021-03-24 01:28:13 发布