GoodShot的专栏

追赶,超越

微软认知服务开发实践(2) - 计算机视觉

前言 计算机视觉所涉及的面很广泛,Computer Vision API中提供了几个常用的分析功能,可实现解读图片内容信息,对图片进行OCR识别,生成缩略图,未来也许会增加更多功能。本文将针对其分别是本文将针对Cognitive Services中提供的功能的调用方法做一些讲解。 Comp...

2017-03-29 12:20:53

阅读数 970

评论数 0

微软认知服务开发实践(1) - 牛津计划简介

简介 近些年来由于云平台、大数据、高性能计算、机器学习等领域的进步,人工智能也火了起来。人脸识别、语音识别等相关功能早已被提出,但是能够形成产品并大规模使用的很少。因为非专业人员很难独自实现一套完整人工智能方案,涉及人工智能基本只能去找开源的库,毕竟所以自己去训练网络,自己去学习各种库的使用并移...

2017-03-29 12:05:28

阅读数 589

评论数 0

NuGet学习笔记(2)——使用图形化界面打包自己的类库

上文NuGet学习笔记(1) 初识NuGet及快速安装使用说到NuGet相对于我们最重要的功能是能够搭建自己的NuGet服务器,实现公司内部类库的轻松共享更新。在安装好NuGet扩展后,我们已经能够通过NuGet轻松下载自己需要的类库,下面来说一说如何将自己的项目类库进行打包发布   使用图...

2017-03-22 12:05:16

阅读数 455

评论数 0

NuGet学习笔记(1)——初识NuGet及快速安装使用

非常类似支持Python的Anaconda的作用,可对比着看。不过NuGet集成在VS中,更加方便和好用(个人觉得),pycharm使用Anaconda的(管理包和python编译器(当然也可看作包)),使用起来命令等第三方,不够友好 关于NuGet园子里已经有不少介绍及使用经验...

2017-03-22 12:04:17

阅读数 528

评论数 0

使用Web.Config Transformation配置灵活的配置文件

发布Asp.net程序的时候,开发环境和发布环境的Web.Config往往不同,比如connectionstring等。如果常常有发布的需求,就需要常常修改web.config文件,这往往是一件非常麻烦的事情。 Web.Config Transformation能够在不同的发布环境下,产生不...

2017-03-15 12:38:00

阅读数 660

评论数 0

【过程改进】10分钟进阶Nuget

目录   nuget初识   nuget本地包   nuget解决依赖冲突 nuget是什么   .net版的maven(java)? 如果你用过windows的chocolatey,mac的homebrew或许更容易理解他,先来回顾下以前我们是如何处理或者碰到过...

2017-03-15 11:12:24

阅读数 498

评论数 0

我的在win10下安装tensorflow的过程

捣鼓了一天,终于成功了 1.按照http://blog.csdn.net/goodshot/article/details/61926805中的方式,只能安装到最后输入的提示命令行conda install --channel https://conda.anaconda.org/dhirschf...

2017-03-14 18:10:23

阅读数 3169

评论数 0

anaconda管理环境

管理环境 创建并激活一个环境 使用”conda create”命令,后边跟上你希望用来称呼它的任何名字: conda create --name snowflake biopython11 这条命令将会给Biopython创建一个新的环境,位置在Anaconda安装文件的/envs/snow...

2017-03-14 17:25:14

阅读数 7513

评论数 0

anaconda管理不同版本Python

管理Python 安装一个不同版本的python 现在我们假设你需要python3来编译程序,但是你不想覆盖掉你的python2.7来升级,你可以创建并激活一个名为snakes的环境,并通过下面的命令来安装最新版本的python3: conda create -n snakes py...

2017-03-14 17:23:55

阅读数 2026

评论数 0

python包的管理(添加的3种方式 删除包)

管理包 conda安装和管理python包非常方便,可以在指定的python环境中安装包,且自动安装所需要的依赖包,避免了很多拓展包冲突兼容问题。不建议使用easy_install安装包。大部分包都可以使用conda安装,无法使用conda和anaconda.org安装的包可以通过pip命令...

2017-03-14 17:22:46

阅读数 12983

评论数 0

【TensorFlow】Windows10 64位下安装TensorFlow - 官方原生GPU版安装

之前 写过一篇在 ubuntu 下安装 TensorFlow 的教程,那个时候 TensorFlow 官方还不支持 Windows 系统,虽然可以通过其他方法安装,但是终究不是原生的,而且安装过程繁琐易错。好消息是,Google官方在11月29号的开发者博客中宣布新的版本(0.12)将 增加对W...

2017-03-13 20:40:14

阅读数 5444

评论数 1

TensorFlow安装 通过Anaconda Prompt Win10 64位安装 cpu版 tensorflow

TensorFlow安装 通过Anaconda Prompt Win10 64位 cpu and gpu:上一篇是通过pip方法安装,这里记录下另一种方法。这里简单写下cpu版安装,gpu版参考上篇先装好cuda和cuDNN在按下面方面安装。 安装Anaconda,目前tensorflow在Win...

2017-03-13 20:38:47

阅读数 6173

评论数 4

数字的可视化:python画图之散点图sactter函数详解

最近开始学习Python编程,遇到scatter函数,感觉里面的参数不知道什么意思于是查资料,最后总结如下: 1、scatter函数原型 2、其中散点的形状参数marker如下: 3、其中颜色参数c如下: 4、基本的使用方法如下: [python] view plai...

2017-03-11 12:44:07

阅读数 4915

评论数 0

meshgrid 的使用方法

1、meshgrid函数用两个坐标轴上的点在平面上画格。 用法:   [X,Y]=meshgrid(x,y)    [X,Y]=meshgrid(x)与[X,Y]=meshgrid(x,x)是等同的    [X,Y,Z]=meshgrid(x,y,z)生成三维数组,可用来计算三变量的函...

2017-03-10 22:43:01

阅读数 16565

评论数 0

矩阵——特征向量(Eigenvector)

矩阵的基础内容以前已经提到,今天我们来看看矩阵的重要特性——特征向量。 矩阵是个非常抽象的数学概念,很多人到了这里往往望而生畏。比如矩阵的乘法为什么有这样奇怪的定义?实际上是由工程实际需要定义过来的。如果只知道概念不懂有何用处,思维就只有抽象性而没有直观性,实在是无法感受矩阵的精...

2017-03-09 18:05:42

阅读数 358

评论数 0

模式识别中的特征向量和矩阵的特征向量有什么关系

模式识别中的特征向量和矩阵的特征向量有什么关系   特征向量是个什么东西?学过矩阵论的人都知道,一个可逆的矩阵可以分解为特征值和特征向量的乘积,即AV=lambaV,其中V是特征向量矩阵;这个的好处是可以把一个矩阵换基;即将一个矩阵基底转换为以另一组以特征向量为基的矩阵;好处呢,显而易见,...

2017-03-09 18:03:57

阅读数 1700

评论数 0

求矩阵特征值的方法和性质

求矩阵特征值的方法 Ax=mx,等价于求m,使得(mE-A)x=0,其中E是单位矩阵,0为零矩阵。 |mE-A|=0,求得的m值即为A的特征值。|mE-A| 是一个n次多项式,它的全部根就是n阶方阵A的全部特征值,这些根有可能相重复,也有可能是复数。 性质: 1)如果n阶矩阵A...

2017-03-09 16:56:02

阅读数 1028

评论数 0

特征向量的几何意义

特征向量的几何意义 特征向量确实有很明确的几何意义,矩阵(既然讨论特征向量的问题,当然是方阵,这里不讨论广义特征向量的概念,就是一般的特征向量)乘以一个向量的结果仍 是同维数的一个向量,因此,矩阵乘法对应了一个变换,把一个向量变成同维数的另一个向量,那么变换的效果是什么呢?这当然与方阵的构造有密切...

2017-03-09 16:50:48

阅读数 683

评论数 0

meshgrid 的使用方法

meshgrid 的使用方法: [X,Y] = meshgrid(x,y) 将向量x和y定义的区域转换成矩阵X和Y,这两个矩阵可以用来表示mesh和surf的三维空间点以及两个变量的赋值。其中矩阵X的行向量是向量x的简单复制,而矩阵Y的列向量是向量y的简单复制。   Generate X a...

2017-03-07 21:49:12

阅读数 817

评论数 0

使用sklearn优雅地进行数据挖掘

作者:jasonfreak   1 使用sklearn进行数据挖掘   1.1 数据挖掘的步骤   数据挖掘通常包括数据采集,数据分析,特征工程,训练模型,模型评估等步骤。使用sklearn工具可以方便地进行特征工程和模型训练工作,在《使用sklearn做单机特征工程》中,我们最后留下了一些...

2017-03-06 20:46:50

阅读数 1179

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭