GoodShot的专栏

追赶,超越

先验概率 后验概率 条件概率 概率分布 贝叶斯公式

根据知乎作者史海波及其它资料整理: 1.【对上帝来说,一切都是确定的,因此概率作为一门学问存在,正好证明了人类的无知。好在人类还是足够聪明的,我们并没有因为事物是随机的而束手无措,我们根据事物的可能性来决定我们的行为。比如,某个人抢银行之前,一定反反复复考虑过各种可能性。如果人们要等到一切...

2017-09-30 09:27:36

阅读数 2462

评论数 0

算法中的算子是什么意思,图像处理一样理解

数学中的映射,当映射的作用是把函数映成函数,或者函数映成数的时候,这个映射常常叫做算子. 比如微分算子D,把就是把函数f作用后,把f映成f的导函数. 拉普拉斯算子是一种二阶微分算子. 图像处理里都把图像看成R^2上的函数,每个像素只是这个函数的采样点。 在这个意义下,算子就...

2017-09-30 08:57:04

阅读数 4450

评论数 0

LVQ,Learning Vector Quantization,学习向量量化

LVQ,Learning Vector Quantization,学习向量量化 LVQ需要数据样本带有类别标记,学习过程中需要利用这些监督信息来辅助聚类。  接受代标记的数据集D和原型向量个数k,以及初始化的原型向量标记ti,ti∈Y,i=1,2,…,k,学习率参数η∈(0,1)。输出为原...

2017-09-29 22:38:03

阅读数 1482

评论数 0

K-Means聚类算法的原理及实现

K-Means聚类算法的原理及实现【转】 【转】http://www.aboutyun.com/thread-18178-1-1.html 问题导读: 1、如何理解K-Means算法? 2、如何寻找K值及初始质心? 3、如何应用K-Means算法处理数据? K-Me...

2017-09-28 20:59:34

阅读数 865

评论数 0

傅立叶变换、拉普拉斯变换、Z变换的联系?为什么要进行这些变换。研究的都是什么?

作者:Heinrich 链接:https://www.zhihu.com/question/22085329/answer/20258145 来源:知乎 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。 这三种变换都非常重要!任何理工学科都不可避免需要这些变换。...

2017-09-28 09:01:29

阅读数 1067

评论数 0

实对称矩阵

如果有n阶矩阵A,其各个元素都为实数,矩阵 主要性质: 1.实对称矩阵A的不同特征值对应的特征向量是正交的。 2.实对称矩阵A的特征值都是实数,特征向量都是实向量。 3.n阶实对称矩阵A必可对角化,且相似对角阵上的元素即为矩阵本身特征值。 4.若λ0具有k...

2017-09-27 14:24:43

阅读数 1207

评论数 0

傅里叶变换的推导

傅里叶变换 编辑 一种积分变换,它来源于函数的傅里叶积分表示。积分     (1) 称为ƒ 的傅里叶积分。周期函数在一定条件下可以展成傅里叶级数,而在(-∞,∞)上定义的非周期函数ƒ,显然不能用三角级数来表示。但是J.-B.-J.傅里叶建议把ƒ表示成所谓傅里叶积分的方法。设ƒ(x)是...

2017-09-26 17:39:01

阅读数 3921

评论数 0

协方差矩阵的几何解释--协方差矩阵的特征值分解部分,很好的解释了奇异值分解主成分选择的原因

http://www.360doc.com/content/16/0121/13/13800296_529534763.shtml A geometric interpretation of the covariance matrix http://www.visiondu...

2017-09-25 22:50:56

阅读数 1329

评论数 0

如何将Anaconda更新到想要的python版本(其实使用的是Anaconda中的切换不同环境的方法,不过步骤挺好)

最近用Anaconda比较多,因为它里面的包很全啊。如果下个原生的python,要用的时候得自己一个个装。 但是有些包又互相依赖,一个个装的时候实在很抓狂。懒人就想到了anaconda这种套装集合了。   问题来了:Anaconda只能下载一个版本的python,比如最新的Ana...

2017-09-25 14:06:11

阅读数 3033

评论数 0

主成分分析PCA

主成分分析PCA 降维的必要性 1.多重共线性--预测变量之间相互关联。多重共线性会导致解空间的不稳定,从而可能导致结果的不连贯。 2.高维空间本身具有稀疏性。一维正态分布有68%的值落于正负标准差之间,而在十维空间上只有0.02%。 3.过多的变量会妨碍查找规律的建立。 4.仅...

2017-09-24 21:53:15

阅读数 854

评论数 0

numpy.cov() 计算协方差矩阵

在PCA中会用到,记录一下 numpy.cov()的作用是计算协方差矩阵,下面给出几个例子 [python] view plain copy >>> x = np.array([[0, 2], [1, 1], [2, 0]...

2017-09-24 21:52:08

阅读数 1245

评论数 0

详解协方差与协方差矩阵

协方差的定义   对于一般的分布,直接代入E(X)之类的就可以计算出来了,但真给你一个具体数值的分布,要计算协方差矩阵,根据这个公式来计算,还真不容易反应过来。网上值得参考的资料也不多,这里用一个例子说明协方差矩阵是怎么计算出来的吧。 记住,X、Y是一个列向量,它表示了每种情况下每个样本...

2017-09-24 21:51:21

阅读数 213

评论数 0

icml和nips等各类重要会议论文收集

icml和nips,足矣 nips全部论文在: https://papers.nips.cc/ icml全部论文在: http://jmlr.org/proceedings/ 从新往旧一点点看,功力会暴涨。

2017-09-24 14:23:48

阅读数 543

评论数 0

icml和nips等会议论文地址

icml和nips,足矣 nips全部论文在: https://papers.nips.cc/ icml全部论文在: http://jmlr.org/proceedings/ ICDM http://www.cs.uvm.edu/~icdm/

2017-09-24 13:42:19

阅读数 1510

评论数 0

通俗理解“Schmidt正交化”和“正交矩阵” 此博文包含图片 (2015-05-19 09:50:47) 施密特正交化在空间上是不断建立垂直于原次维空间的新向量的过程。 如图β2垂直于β1(1维)

通俗理解“Schmidt正交化”和“正交矩阵” 施密特正交化在空间上是不断建立垂直于原次维空间的新向量的过程。 如图β2垂直于β1(1维)构建新2维,β3垂直于β1β2(2维)构建新3维。 新βn等于αn减去αn在各...

2017-09-23 12:03:20

阅读数 438

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭