GoodShot的专栏

追赶,超越

梯度下降(Gradient Descent)小结

https://blog.csdn.net/GoodShot/article/details/86137783    在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法。这里就对梯度下降法做一个完整的...

2017-10-22 19:13:23

阅读数 428

评论数 0

神经网络——BP算法

一、BP算法的意义对于初学者来说,了解了一个算法的重要意义,往往会引起他对算法本身的重视。BP(Back Propagation,后向传播)算法,具有非凡的历史意义和重大的现实意义。1.1、历史意义1969年,作为人工神经网络创始人的明斯基(Marrin M insky)和佩珀特(Seymour ...

2017-10-21 20:24:16

阅读数 9185

评论数 0

距离度量方式(马氏距离,欧式距离,曼哈顿距离)

2017-10-21 12:14:19

阅读数 1066

评论数 0

18种和“距离(distance)”、“相似度(similarity)”相关的量的小结

在计算机人工智能领域,距离(distance)、相似度(similarity)是经常出现的基本概念,它们在自然语言处理、计算机视觉等子领域有重要的应用,而这些概念又大多源于数学领域的度量(metric)、测度(measure)等概念。  这里拮取其中18种做下小结备忘,也借机熟悉markdown...

2017-10-21 11:33:19

阅读数 3769

评论数 0

如何理解K-L散度(相对熵)

Kullback-Leibler Divergence,即K-L散度,是一种量化两种概率分布P和Q之间差异的方式,又叫相对熵。在概率学和统计学上,我们经常会使用一种更简单的、近似的分布来替代观察数据或太复杂的分布。K-L散度能帮助我们度量使用一个分布来近似另一个分布时所损失的信息。 K-L散度...

2017-10-21 11:30:24

阅读数 1861

评论数 0

图像灰度变换及实现

灰度变换是空间域图像处理技术中最基础的技术,常用的转换有图像反转、对数变换和伽马(幂律)变换。 图像反转 图像反转的原理很简单,就是颠倒黑白的运算,处理后的效果看起来像是原图的底片,对于一个8bit的灰度图像,变换公式为: s=255-1-r; op...

2017-10-16 20:19:58

阅读数 1459

评论数 0

学习笔记(二)——直方图均衡化和匹配

本文的学习是基于冈萨雷斯《数字图像处理第二版》这本专著的对应于书中章节3.3 这一篇文章如题,主要是讲直方图均衡化和匹配的一些基本概念。不涉及很多的技术问题专业数学推导,只是为入门图像处理做一个感性的认识,具体应用请朋友们自己发挥创造,欢迎大家一起来交流。 好了言归正传。 直方图...

2017-10-16 19:56:19

阅读数 378

评论数 0

学习笔记(一)——图像的灰度级和动态范围

1、图像的灰度级:一幅灰度图像它的像素的强度值的取值范围表示为[0, L-1],其中。一般情况下k = 8。 数字图像嘛,肯定要和计算机打交道,那肯定就要用2进制表示了。  2、图像的动态范围:统计一下每一点的像素灰度值,([0,255]这256个候选人,对他们投票。)看看这幅图像的像素点拥有灰...

2017-10-16 19:55:06

阅读数 1981

评论数 0

标准化、归一化(二)

答一: 归一化方法: 1、把数变为(0,1)之间的小数 主要是为了数据处理方便提出来的,把数据映射到0~1范围之内处理,更加便捷快速。 2、把有量纲表达式变为无量纲表达式 归一化是一种简化计算的方式,即将有量纲的表达式,经过变换,化为无量纲的表达式,成为纯量。 标准化...

2017-10-15 16:56:39

阅读数 554

评论数 0

正则化、归一化含义解析(一)

2017-10-15 16:51:23

阅读数 270

评论数 0

方差、标准差、均方差、均方误差区别总结

参考了http://blog.csdn.net/Leyvi_Hsing/article/details/54022612 一、百度百科上方差是这样定义的:  (variance)是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之...

2017-10-15 15:46:55

阅读数 1777

评论数 0

数字图像处理中的高通滤波和低通滤波

高通滤波:边缘提取与增强 低通滤波:边缘平滑 边缘区域的灰度变换加大,也就是频率较高。所以,对于高通滤波,边缘部分将被保留,非边缘部分将被过滤;对于低通滤波,边缘区域将被平滑过渡。

2017-10-12 22:29:27

阅读数 1919

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭