GoodShot的专栏

追赶,超越

LDA (Linear Discriminate Analysis)Fisher Criteria

之前说到的PCA,它主要的目的是寻找数据variance变化最大的轴。通过删去数据中variance变化不大的轴来压缩数据的维数。PCA没有办法很好的解决数据分类的问题(classification)。LDA or Fisher Discriminate Analysis 是一种用于分类数据的分析...

2018-05-19 21:11:38

阅读数:187

评论数:0

主成分分析PCA案例及原理

1.主成分分析PCA案例 http://www.cnblogs.com/zhangchaoyang/articles/2222048.html附:使用上方链接的解释:2.主成分分析(PCA)原理总结http://www.cnblogs.com/pinard/p/6239403.html...

2018-05-19 16:05:39

阅读数:260

评论数:0

中心化(又叫零均值化)和标准化(又叫归一化)

一、中心化(又叫零均值化)和标准化(又叫归一化)概念及目的?1、在回归问题和一些机器学习算法中,以及训练神经网络的过程中,通常需要对原始数据进行中心化(Zero-centered或者Mean-subtraction(subtraction表示减去))处理和标准化(Standardization或N...

2018-05-19 12:39:04

阅读数:4013

评论数:0

"数据的属性"及“数据的特征”

数据的属性指的是数据的最原始的特征,比如图片的原始像素点,而数据的特征大多指的是属性经过特定的操作的数据,如图片的像素点经过CNN卷积之后得到的特征。广义来说,数据的属性和特征没有区别。...

2018-05-17 11:25:25

阅读数:413

评论数:0

经验误差,泛化误差

经验误差,泛化误差前言我们在上篇博文 《机器学习模型的容量,过拟合与欠拟合》 中曾经提到过模型的泛化问题,指的就是描述一个模型在未见过的数据中的表现能力。这里再提出了,用于比较经验误差。 ...

2018-05-17 11:22:44

阅读数:194

评论数:0

深度学习与计算机视觉系列(3)_线性SVM与SoftMax分类器--在深度学习的视觉分类中的,这两个分类器的原理和比较

作者: 寒小阳 时间:2015年11月。 出处:http://blog.csdn.net/han_xiaoyang/article/details/49999299 声明:版权所有,转载请注明出处,谢谢。1. 线性分类器在深度学习与计算机视觉系列(2)我们提到了图像识别的问题,同时提出了一种简单的...

2018-05-15 21:29:24

阅读数:132

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭