数据模型管理实践及成熟度评价是数据管理领域中的重要环节,它们帮助组织评估和提升其数据管理能力。以下是一些关键点:
-
数据模型管理实践:
- 数据模型管理涉及元数据管理、注册、编码、交换要求,以及公共数据字典、基本数据集元数据等标准。
- 它还包括主数据标准,规范主数据的描述、管理和应用,如分类、管理、编码、质量等。
- 数据目录标准也属于数据模型管理实践,涉及数据目录的编制、管理和维护等。
- 数据模型标准则规范数据模型的架构、建设和维护,包括数据模型参考架构、管理要求、成熟度等。
-
数据模型成熟度评价:
- 《数据模型管理能力成熟度白皮书》提供了数据模型管理的成熟度评估模型,旨在提升企业数据模型管理水平。
- 数据管理能力成熟度模型(DCMM)是国家标准,包含数据战略、数据治理、数据架构、数据应用、数据安全、数据质量、数据标准和数据生存周期八个核心能力域及28个能力项445条标准进行评估。
- DCMM将数据管理能力成熟度划分为五个等级,从初始级到优化级,代表企业数据管理和应用的成熟度水平。
-
行业实践:
- 证券期货业数据模型标准规划(2022-2025)中提到,数据模型是行业数据治理的核心,涉及行业数据流图、行业抽象模型和行业逻辑模型、行业数据模型管理平台三部分,形成“三位一体”的数据模型成果体系。
- 行业数据模型规范了行业数据标准,指导行业标准编制,确保规范性和一致性,协助监管数据模型设计及监管系统建设。
-
工具与方法论:
- 在数据建模与设计中,战略思维与实践洞察强调了技术与业务协作的重要性,以及迭代优化与长期适应的必要性。
- 数据建模的全流程实践包括数据需求分析、模型开发与迭代、数据模型维护与优化。
通过这些实践和成熟度评价,组织可以更好地管理和利用数据,提高数据治理的效率和效果,从而在数字化转型中发挥数据的潜在价值。