轻量级网路--------MobileNet_v1总结

 

   1.创新点

  • Google2017年提出的适用于手机端的神经网络模型
  • 主要使用了深度可分离卷积Depthwise Separable Convolution 将卷积核进行分解计算来减少计算量
  • 引入了两个超参数减少参数量和计算量
    • 宽度乘数(Width Multiplier): [减少输入和输出的 channels ]
    • 分辨率乘数(Resolution Multiplier):[减少输入输出的 feature maps 的大小]

  2.深度可分离卷积(Depthwise Separable Convolution

  • 可以将一个标准卷积核分成一个深度卷积depthwise convolution 和 一个1X1的卷积(叫作逐点卷积pointwise convolution)。depthwise convolution实际上就是卷积核和feature map的对应通道相卷积,这个操作仅涉及单个通道,在代码中用分组卷积实现,即分的组数和feature map的通道数目相等,这样卷积之后不改变输出的通道数目,重要的是这个操作的信息仅在当前通道中流动,没有通道间的信息交互。因此DW卷积之后跟着1X1的卷积进行通道间的信息融合。通过这两个操作级联来模拟通过少的多的计算量来模拟常规卷积。
  • 如下图所示

depthwise separable convolution

  深度可分离卷积与标准卷积的结构对比如下:

3. 宽度乘数(Width Multiplier)

  • 引入超参数α, 目的是使模型变瘦,
  • 即输入层的channels个数M,变成αM,输出层的channels个数N变成了αN
  • 所以引入宽度乘数后的总的计算量是

    Dk⋅Dk⋅αM⋅DF⋅DF+αM⋅αN⋅DF⋅DF

    • 一般α∈(0,1],常取的值是1, 0.75, 0.5, 0.25,
    • 大约可以减少参数量和计算量的α2

4. 分辨率乘数 (Resolution Multiplier)

  • 引入超参数ρ,目的是降低图片的分辨率
  • 即作用在输入的feature map
  • 所以再引入分辨率乘数后总的计算量是:

    Dk⋅Dk⋅αM⋅ρDF⋅ρDF+αM⋅αN⋅ρDF⋅ρDF

    • 一般输入图片的分辨率是224, 192, 160 or 128
    • 大约可以减少计算量的ρ2

5. 交叉验证的实验结果

  宽度因子取值为α∈{1,0.75,0.5,0.25},分辨率取值为{224,192,160,128} 。

 

 

6.细节

 【1】deep-wise卷积核含有的参数较少,作者发现这部分最好使用较小的weight decay或者不使用weight decay

 【2】精度和vgg差不多,但是运算量减少了30倍

参考文献:http://lawlite.me/2017/09/12/%E8%AE%BA%E6%96%87%E8%AE%B0%E5%BD%95-MobileNets-Efficient-Convolutional-Neural-Networks-for-Mobile-Vision-Application/

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值