最大子矩阵和 (dp)

最大子矩阵和


1282:最大子矩阵

时间限制: 1000 ms 内存限制: 65536 KB
提交数: 1477 通过数: 962

【题目描述】
已知矩阵的大小定义为矩阵中所有元素的和。给定一个矩阵,你的任务是找到最大的非空(大小至少是1 × 1)子矩阵。

比如,如下4 × 4的矩阵

0  -2 -7  0
9  2 -6  2
-4  1 -4  1
-1  8  0 -2

的最大子矩阵是

 9 2
-4 1
-1 8

这个子矩阵的大小是15。

【输入】
输入是一个N×N

的矩阵。输入的第一行给出N(0<N≤100)。再后面的若干行中,依次(首先从左到右给出第一行的N个整数,再从左到右给出第二行的N个整数……)给出矩阵中的N2个整数,整数之间由空白字符分隔(空格或者空行)。已知矩阵中整数的范围都在[−127,127]。

【输出】
输出最大子矩阵的大小。

【输入样例】

4
0 -2 -7  0
9  2 -6  2
-4  1 -4  1
-1  8  0 -2

【输出样例】

15

思路:

我们都知道在一维情况下求最大连续子序列和的操作:

for(int i=1;i<=n;i++){
    dp[i]=max(a[i],dp[i-1]+a[i]);
}

那么该怎么推广到二维情况下呢:(比如样例)

0 -2 -7 0

9 2 -6 2

-4 1 -4 1

-1 8 0 -2

步骤:

(1)求矩阵大小是1*k(k=1,2,3,4)

可以发现就是求每行的最大连续子序和

0 -2 -7 0  (ans=0,矩阵为[0])

9 2 -6 2  (ans=11,矩阵为[9 2])

(2)求矩阵大小是2*k(k=1,2,3,4)

这时我们可以在第1,2行或2,3行或3,4行找最大矩阵

对于矩阵:

0 -2 -7 0

9 2 -6 2

来说,最大矩阵是
因为我们取的是矩阵,肯定是竖着一列都取的,不可能这一列取到第i个元素,上一列取到第i-1个元素,这样我们就可以把要求的两行,两两加起来

9 0 -13 2

这样求出的最大连续子序和是9,这个结果也就是这个矩阵对应的最大矩阵和。

同理把

9 2 -6 2

-4 1 -4 1

-4 1 -4 1

-1 8 0 -2

也分别加起来,三种情况下求出的最大值,就是2*k大小矩阵的最大值

(3)同理,我们求3k,4k

AC代码

#include <bits/stdc++.h>
using namespace std;

const int N = 115;
int a[N][N],b[N][N];
int dp[N];
int Max = 0;
int n;

void solve(int j){
	memset(dp,0,sizeof dp);
	for(int i = 1;i <= n;i ++){
		dp[i] = max(b[j][i],dp[i - 1] + b[j][i]);
		Max = max(dp[i],Max);
	}
}
int main(){
	cin >> n;
	for(int i = 1;i <= n;i ++){
		for(int j = 1;j <= n;j ++){
			cin >> a[i][j];
		}
	}	
	for(int i = 1;i <= n;i ++){
		memset(b,0,sizeof b);
		for(int j = i;j <= n;j ++){
			for(int k = 1;k <= n;k ++){
				b[j][k] = b[j - 1][k] + a[j][k];
			}
			solve(j);
		}
	}
	cout << Max << endl;
	return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值