最大子矩阵和
1282:最大子矩阵
时间限制: 1000 ms 内存限制: 65536 KB
提交数: 1477 通过数: 962
【题目描述】
已知矩阵的大小定义为矩阵中所有元素的和。给定一个矩阵,你的任务是找到最大的非空(大小至少是1 × 1)子矩阵。
比如,如下4 × 4的矩阵
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
的最大子矩阵是
9 2
-4 1
-1 8
这个子矩阵的大小是15。
【输入】
输入是一个N×N
的矩阵。输入的第一行给出N(0<N≤100)。再后面的若干行中,依次(首先从左到右给出第一行的N个整数,再从左到右给出第二行的N个整数……)给出矩阵中的N2个整数,整数之间由空白字符分隔(空格或者空行)。已知矩阵中整数的范围都在[−127,127]。
【输出】
输出最大子矩阵的大小。
【输入样例】
4
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
【输出样例】
15
思路:
我们都知道在一维情况下求最大连续子序列和的操作:
for(int i=1;i<=n;i++){
dp[i]=max(a[i],dp[i-1]+a[i]);
}
那么该怎么推广到二维情况下呢:(比如样例)
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
步骤:
(1)求矩阵大小是1*k(k=1,2,3,4)
可以发现就是求每行的最大连续子序和
0 -2 -7 0 (ans=0,矩阵为[0])
9 2 -6 2 (ans=11,矩阵为[9 2])
(2)求矩阵大小是2*k(k=1,2,3,4)
这时我们可以在第1,2行或2,3行或3,4行找最大矩阵
对于矩阵:
0 -2 -7 0
9 2 -6 2
来说,最大矩阵是
因为我们取的是矩阵,肯定是竖着一列都取的,不可能这一列取到第i个元素,上一列取到第i-1个元素,这样我们就可以把要求的两行,两两加起来
9 0 -13 2
这样求出的最大连续子序和是9,这个结果也就是这个矩阵对应的最大矩阵和。
同理把
9 2 -6 2
-4 1 -4 1
和
-4 1 -4 1
-1 8 0 -2
也分别加起来,三种情况下求出的最大值,就是2*k大小矩阵的最大值
(3)同理,我们求3k,4k
AC代码
#include <bits/stdc++.h>
using namespace std;
const int N = 115;
int a[N][N],b[N][N];
int dp[N];
int Max = 0;
int n;
void solve(int j){
memset(dp,0,sizeof dp);
for(int i = 1;i <= n;i ++){
dp[i] = max(b[j][i],dp[i - 1] + b[j][i]);
Max = max(dp[i],Max);
}
}
int main(){
cin >> n;
for(int i = 1;i <= n;i ++){
for(int j = 1;j <= n;j ++){
cin >> a[i][j];
}
}
for(int i = 1;i <= n;i ++){
memset(b,0,sizeof b);
for(int j = i;j <= n;j ++){
for(int k = 1;k <= n;k ++){
b[j][k] = b[j - 1][k] + a[j][k];
}
solve(j);
}
}
cout << Max << endl;
return 0;
}