自由场与压力场麦克风区别以及应用领域

当麦克风架设于音场之中,麦克风本身会影响音场并改变声压值,依据音场的差异以及麦克风的型式,某些影响非常的微小可忽略不计;但是也有可能会造成量测上的误差,误差值可能高达几个分贝,因此这些影响必须加以评估。

自由音场中,麦克风架设于此音场会干扰音场之声压。原因是麦克风在音场中会产生反射声波,在相同的量测点上,加诸于麦克风薄膜上的压力与未受麦克风干扰音场的压力不同。此二压力的比率与麦克风薄膜直径、声波波长的比率有关,因此其对于高频部分的声压影响较大。
麦克风本体对于音场的影响可利用量测频谱再经由后处理做补偿,或是将此补偿内建于麦克风中。自由音场型式麦克风即具有此补偿功能,所以在一般的自由音场下其声压有平坦的频率响应。

压力音场中,为了量测如小密闭空间等压力音场,麦克风通常架设于壁上。因为麦克风薄膜的刚性较墙壁面小,因此声压会影响薄膜而得以量测声压值。而麦克风对于此音场的影响与密闭空间的尺寸大小、形状以及薄膜的阻抗有关。
压力音场型式麦克风薄膜表面压力愈均匀,其输出电压愈平坦,频率响应特性愈好,用于自由音场时,必须和声音传播方向垂直,让声音仅掠过麦克风前端。

两类传感器的最主要区别是:
1.自由场传声器所测得声压是消除了传声器对声场影响后的声压,其自由场灵敏度平直,具有平坦频率响应的传声器叫自由场型(或声场型)传声器,最主要用于消声室等自由场测试,它能比较真实地测量出传声器放入前该点原来的自由场声压
2.压力场传感器则测的是实际的声压级,即是传声器振膜表面上的声压级,包括了因为传声器本身的存在而引起的声场的变化。典型的应用是测量封闭耦合腔的声压级;测量边界或壁面上的声压级,在这种场合,传声器构成壁面的一部分,因此测量得到的是壁面自身上的声压级

文章来源:

http://www.52rd.com/bbs/Archive_Thread.asp?SID=128183&TID=2&WebShieldDRSessionVerify=tDiKMdD4FUD9vXOtBNUf
http://www.ca001.com/forum.php?mod=viewthread&tid=395304

AI实战-学生生活方式模式数据集分析预测实例(含24个源代码+69.54 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:24个代码,共149.89 KB;数据大小:1个文件共69.54 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn plotly.express warnings sklearn.model_selection.StratifiedShuffleSplit sklearn.pipeline.Pipeline sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OrdinalEncoder numpy sklearn.model_selection.cross_val_score sklearn.linear_model.LinearRegression sklearn.metrics.mean_squared_error sklearn.tree.DecisionTreeRegressor sklearn.ensemble.RandomForestRegressor sklearn.model_selection.train_test_split sklearn.preprocessing.PowerTransformer imblearn.pipeline.Pipeline imblearn.over_sampling.SMOTE sklearn.ensemble.AdaBoostClassifier sklearn.metrics.accuracy_score sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score optuna scipy.stats torch torch.nn torchvision.transforms torchvision.models torch.optim cv2 glob glob.glob torch.utils.data.DataLoader torch.utils.data.Dataset random.shuffle torch.utils.data.random_split torchsummary.summary matplotlib.ticker pyspark.sql.SparkSession pyspark.sql.functions.count pyspark.sql.functions.max pyspark.sql.functions.min pyspark.sql.functions.avg pyspark.sql.functions.stddev_samp pyspark.sql.functions.skewness pyspark.sql.functions.kurtosis pyspark.sql.functions pyspark.ml.feature.Tokenizer pyspark.ml.feature.VectorAssembler sklearn.preprocessing.LabelEncoder keras.models.Sequential keras.layers.Dense keras.utils.to_categorical ptitprince statsmodels.distributions.empirical_distribution.ECDF statsmodels.stats.outliers_influence.variance_inflation_factor ppscore sklearn.feature_selection.mutual_info_classif sklearn.decomposition.PCA sklearn.model_selection.StratifiedKFold sklearn.tree.DecisionTreeClassifier sklearn.metrics.balanced_accuracy_score sklearn.metrics.confusion_matrix mlxtend.plotting.plot_confusion_matrix scipy.stats.pearsonr scipy.stats.f_oneway sklearn.feature_selection.mutual_info_regression sklearn.feature_selecti
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值