基本思想:确保正样本计算得到的分数比负样本的高
假设由正、负样本计算得到的分数分别为 s + s_{+} s+和 s − s_{-} s−,那么我们的目标为最大化 ( s + − s − ) (s_{+}-s_{-}) (s+−s−),换一个角度,也就是最小化 ( s − − s + ) (s_{-}-s_{+}) (s−−s
本文介绍了最大间隔目标函数的基本思想,旨在确保正样本的得分高于负样本。通过最大化(s+ - s-)来实现这一目标,当s- > s+时引入误差项J,并设置阈值Δ,最终得到优化的目标函数:Loss = minimize J = max(1 + s- - s+, 0)。内容参考了《统计学习方法》和关于线性分类器的讨论。"
129680826,13571343,使用Vue实现自定义切片图片展示,"['前端', 'Vue.js', 'JavaScript', '前端框架']
基本思想:确保正样本计算得到的分数比负样本的高
假设由正、负样本计算得到的分数分别为 s + s_{+} s+和 s − s_{-} s−,那么我们的目标为最大化 ( s + − s − ) (s_{+}-s_{-}) (s+−s−),换一个角度,也就是最小化 ( s − − s + ) (s_{-}-s_{+}) (s−−s
1734

被折叠的 条评论
为什么被折叠?