PointMed详解
文章平均质量分 71
小白零基础看懂神经网络代码
grizzly_whisper
这个作者很懒,什么都没留下…
展开
-
PointMed详解——编码解码过程
用于实现点云数据的转换,点云数据表示为一组三维点,在点云数据上执行一种类似于自注意力机制的操作。点云数据的转换块,其中通过自注意力机制(类似于Transformer中的注意力机制)来对点云数据进行重要性加权聚合,同时考虑了位置编码。接受参数:dim:输入和输出特征维数k:计算自注意力的近邻数。原创 2023-11-09 11:49:53 · 125 阅读 · 1 评论 -
PointMed详解——test
前面两个函数和train.py中的函数时一样,一个用来获取参数,一个用来写日志。原创 2023-11-07 17:12:34 · 61 阅读 · 0 评论 -
PointMed详解——Model
它包含了卷积层、批量归一化、激活函数和Dropout,用于在特征空间中引入非线性性质和防止过拟合,以提高分割的性能。分割预测和边缘预测是模型的主要输出,用于预测点云中每个点的类别和边缘信息。这些预测是通过卷积神经网络层生成的,以捕捉数据中的局部和全局特征。模块,对分割特征和边缘预测进行特征匹配和汇聚,有助于提高分割预测的性能。这是为了进一步提高模型的分割准确性。批量归一化:通过标准化特征,有助于提高训练的稳定性,加速收敛,并提高模型的泛化能力。是分割细化预测,通常经过更细致的处理,以提高分割预测的质量。原创 2023-11-07 15:08:52 · 64 阅读 · 0 评论 -
PointMed详解——trian
使用的是“argparse”模块来解析命令行参数,并返回一个配置(configuration)对象通过命令行参数来配置一个PyTorch Point Cloud Semantic Segmentation的任务,其中--config参数用于指定配置文件的路径,'opts'参数用于提供额外的配置选项,最终返回一个包含所有配置信息的配置对象。原创 2023-11-06 15:30:35 · 100 阅读 · 0 评论
分享