最小费用流模板

本文介绍了一种基于SPFA算法实现的最小费用最大流算法,通过不断寻找增广路径来更新残余网络,直到无法找到从源点到汇点的更短路径为止。文章详细展示了如何使用邻接表存储图数据结构,并提供了插入边和执行SPFA的具体步骤。
摘要由CSDN通过智能技术生成
#define INFINITE 1 << 26
#define MAX_NODE 1005
#define MAX_EDGE_NUM 40005
#include<bits/stdc++.h>
using namespace std;
struct Edge{
    int to;
    int vol;
    int cost;
    int next;
};
Edge gEdges[MAX_EDGE_NUM];

int gHead[MAX_NODE];
int gPre[MAX_NODE];
int gPath[MAX_NODE];
int gDist[MAX_NODE];

int gEdgeCount;
void InsertEdge(int u, int v, int vol, int cost){
    gEdges[gEdgeCount].to = v;
    gEdges[gEdgeCount].vol = vol;
    gEdges[gEdgeCount].cost = cost;
    gEdges[gEdgeCount].next = gHead[u];
    gHead[u] = gEdgeCount++;

    gEdges[gEdgeCount].to = u;
    gEdges[gEdgeCount].vol = 0;         //vol为0,表示开始时候,该边的反向不通
    gEdges[gEdgeCount].cost = -cost;    //cost 为正向边的cost相反数,这是为了
    gEdges[gEdgeCount].next = gHead[v];
    gHead[v] = gEdgeCount++;
}

//假设图中不存在负权和环,SPFA算法找到最短路径/从源点s到终点t所经过边的cost之和最小的路径
bool Spfa(int s, int t){
    memset(gPre, -1, sizeof(gPre));
    memset(gDist, 0x7F, sizeof(gDist));
    gDist[s] = 0;
    queue<int> Q;
    Q.push(s);
    while (!Q.empty()){//由于不存在负权和环,因此一定会结束
        int u = Q.front();
        Q.pop();

        for (int e = gHead[u]; e != -1; e = gEdges[e].next){
            int v = gEdges[e].to;
            if (gEdges[e].vol > 0 && gDist[u] + gEdges[e].cost < gDist[v]){
                gDist[v] = gDist[u] + gEdges[e].cost;
                gPre[v] = u; //前一个点
                gPath[v] = e;//该点连接的前一个边
                Q.push(v);
            }
        }
    }

    if (gPre[t] == -1)  //若终点t没有设置pre,说明不存在到达终点t的路径
        return false;
    return true;
}

int MinCostFlow(int s, int t){
    int cost = 0;
    int flow = 0;
    while (Spfa(s, t)){
        int f = INFINITE;
        for (int u = t; u != s; u = gPre[u]){
            if (gEdges[gPath[u]].vol < f)
                f = gEdges[gPath[u]].vol;
        }
        flow += f;
        cost += gDist[t] * f;
        for (int u = t; u != s; u = gPre[u]){
            gEdges[gPath[u]].vol -= f;   //正向边容量减少
            gEdges[gPath[u]^1].vol += f; //反向边容量增加
        }
    }
    return cost;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值