数据分析
文章平均质量分 78
gscienty
Talk is cheap show me the code.
展开
-
信息检索模型与评估
信息检索的前提是对信息内容的索引提取,所谓的索引就是指用于标识信息内容的项。建立信息的索引的方法,通常可分为两类:一种是手动定义索引,一种是自动获取索引。而我们所要面临的数据源,既可能是模块化或结构化的语言,譬如HTML语言,又可能是非结构化的语言,譬如自然语言;既可能是与上下文相关的词汇,又可能是与上下文无关的词汇;既可能是一个简单的单词又可能是一个词组(这里的数据源前提假设为英文,对于中文的信息原创 2016-11-25 14:06:20 · 1652 阅读 · 0 评论 -
感知神经网络模型与学习算法
单层感知器该概念的是在1957年美国学者Rosenblatt提出的。感知器是监督学习的神经网络模型。单层感知器是包含一个突触权值可调的神经元的感知器模型。是神经网络用来进行模式识别的一种最简单的模型,属于前向神经网络类型,但是仅由一个神经元组成的单层感知器只能区分线性可分的模式。一个感知器模型,包括一个线性的累加器和一个二值阈值元件,同时还有一个外部偏差b,也称作阈值,其值可以为正,也可以为负。线性原创 2016-11-27 16:17:13 · 1222 阅读 · 0 评论 -
线性神经网络模型与学习算法
线性神经网络类似于感知器,但是线性神经网络的激活函数是线性的,而不是硬转移函数,因此,线性神经网络的输出可以是任意值,而感知器的输出不是0就是1。线性神经网络和感知器一样只能求解线性可分的问题。因此,线性神经网络的限制和感知器相同。线性神经元网络模型线性神经元与感知器神经元具有相似的结构,唯一的不同是线性神经元使用了线性传递函数purelin,因此与感知器神经网络不同,线性神经网络的输出可以是任意的原创 2016-11-27 17:50:10 · 2815 阅读 · 0 评论 -
BP神经网络模型与学习算法
在感知器神经网络模型与线性神经网络模型学习算法中,理想输出与实际输出之差被用来估计神经元连接权值误差。当解决线性不可分问题而引入多级网络后,如何估计网络隐含层神经元的误差就成了一大难题。因为在实际中,无法知道隐含层的任何神经元的理想输出值。1985年Rumelhart、McClelland提出了BP网络的误差反向后传(BP)学习算法,实现了Minsky设想的多层神经网络模型。BP算法在于利用输出后的原创 2016-11-27 19:59:17 · 15922 阅读 · 1 评论 -
径向基函数神经网络模型与学习算法
1985年,Powell提出了多变量插值的径向基函数(RBF)方法。1988年Moody和Darken提出了一种神经网络结构,即RBF神经网络,属于前向神经网络类型,它能够以任意精度逼近任意连续函数,特别适合于解决分类问题。RBF网络的结构与多层前向网络类似,它是一种三层前向网络。输入层由信号源结点组成,第二层为隐含层,隐单元数视所描述问题的需要而定,隐单元的变换函数是RBF,它是对中心点径向对称且原创 2016-11-27 21:26:40 · 9546 阅读 · 0 评论 -
自组织神经网络模型与学习算法
自组织神经网络又称为自组织竞争神经网络,特别适合于解决模式分类和识别方面的应用问题。该网络模型属于前向神经网络模型,采用无监督学习算法,其工作的基本思想是让竞争层的各个神经元通过竞争与输入模式进行匹配,最后仅有一个神经元成为竞争的胜利者,这一获胜神经元的输出就代表对输入模式的分类。常用的自组织竞争神经网络有自适应共振理论(ART)网络,自组织特征映射(SOM)网络,对传(CP)网络和协同神经网络(S原创 2016-11-28 10:43:33 · 6893 阅读 · 1 评论
分享