MATLAB中使用FFT做频谱分析时频率分辨率问题
最近做FFT时,使用的采样频率和信号长度的取舍一直没有搞清楚,后来在论坛上发了一个贴子《总结一下使用FFT和维纳-辛钦定理求解PSD问题》(讨论见http://www.ilovematlab.cn/thread-27150-1-1.html,特别感谢会员songzy41,他的问题给了我很大启示),跟帖中给了我不少启示,并且让我对“频率分辨率”这个概念有了更深入的理解。再次一并感谢论坛的高手们。
频率分辨率,顾名思义,就是将信号中两个靠的很近的频谱分开的能力。
信号x(t)长度为Ts,通过傅氏变换后得到X,其频率分辨率为Δf=1/T(Hz),若经过采样后,假设采样频率为fs=1/Ts,而进行频谱分析时要将这个无穷长的序列使用窗函数截断处理,假设使用矩形窗,我们知道,矩形窗的频谱为sinc函数,主瓣宽度可以定义为2*pi/M,M为窗宽,那么,时域相乘相当于频域卷积,频域内,这一窗函数能够分辨出的最近频率肯定不可能小于2*pi/M了,也就是如果数据长度不能满足2*pi/M<|w2-w1|(w2,w1为两个靠的很近的频率),那么在频谱分析时,频谱上将不能分辨出这两个谱,由于w2-w1=2*pi(f2-f1)/fs=2*pi*Δf/fs也就是2*pi/M<2*piΔf/fs,得到Δf的限制为fs/M,这就是窗函数宽度的最小选择,就是说,根据Shannon采样定理确定了采样频率后,要根据靠的最近的谱峰来确定最小的采样长度,这样,所作出来的频谱才能分辨出那两个谱峰,也就是拥有了相应的频率分辨率。
几个例子:
[CODE]
Fs = 80;
n = 0:1/Fs:1023*1/Fs;
x = sin(2*pi*10*n)+sin(2*pi*9.8*n);
N = length(n);
X = fftshift(fft(x));
figure(1);
subplot(211)
plot((-N/2:N/2-1)*Fs/N,abs(X)*2/N);
grid on;
axis([0 15 0 1]);
title('窗长1024,包含整周期');
n = 0:1/Fs:979*1/Fs;
x = sin(2*pi*10*n)+sin(2*pi*9.8*n);
N = length(n);
X = fftshift(fft(x));
subplot(212)
plot((-N/2:N/2-1)*Fs/N,abs(X)*2/N);
grid on;
axis([0 15 0 1]);
title('窗长980,包含整周期');
n = 0:1/Fs:399*1/Fs;
x = sin(2*pi*10*n)+sin(2*pi*9.8*n);
N = length(n);
X = fftshift(fft(x));
figure(2);
subplot(211)
plot((-N/2:N/2-1)*Fs/N,abs(X)*2/N);
grid on;
axis([0 15 0 1]);
title('窗长400,不包含整周期');
Fs = 20;
n = 0:1/Fs:1024*1/Fs;
x = sin(2*pi*10*n)+sin(2*pi*9.8*n);
N = length(n);
X = fftshift(fft(x));
subplot(212)
plot((-N/2:N/2-1)*Fs/N,abs(X)*2/N);
grid on;
axis([0 15 0 1]);
title('窗长1024,采样率过小');
最近做FFT时,使用的采样频率和信号长度的取舍一直没有搞清楚,后来在论坛上发了一个贴子《总结一下使用FFT和维纳-辛钦定理求解PSD问题》(讨论见http://www.ilovematlab.cn/thread-27150-1-1.html,特别感谢会员songzy41,他的问题给了我很大启示),跟帖中给了我不少启示,并且让我对“频率分辨率”这个概念有了更深入的理解。再次一并感谢论坛的高手们。
频率分辨率,顾名思义,就是将信号中两个靠的很近的频谱分开的能力。
信号x(t)长度为Ts,通过傅氏变换后得到X,其频率分辨率为Δf=1/T(Hz),若经过采样后,假设采样频率为fs=1/Ts,而进行频谱分析时要将这个无穷长的序列使用窗函数截断处理,假设使用矩形窗,我们知道,矩形窗的频谱为sinc函数,主瓣宽度可以定义为2*pi/M,M为窗宽,那么,时域相乘相当于频域卷积,频域内,这一窗函数能够分辨出的最近频率肯定不可能小于2*pi/M了,也就是如果数据长度不能满足2*pi/M<|w2-w1|(w2,w1为两个靠的很近的频率),那么在频谱分析时,频谱上将不能分辨出这两个谱,由于w2-w1=2*pi(f2-f1)/fs=2*pi*Δf/fs也就是2*pi/M<2*piΔf/fs,得到Δf的限制为fs/M,这就是窗函数宽度的最小选择,就是说,根据Shannon采样定理确定了采样频率后,要根据靠的最近的谱峰来确定最小的采样长度,这样,所作出来的频谱才能分辨出那两个谱峰,也就是拥有了相应的频率分辨率。
几个例子:
考虑双正弦信号:x = sin(2*pi*10*n)+sin(2*pi*9.8*n);根据Shannon采样定理,采样频率要大于截止频率的两倍,这里选采样频率为80,那么,我们可以看到,Δf为0.2Hz,那么,最小的数据长度为0.2/80=400,但是对正弦信号的频谱分析经验告诉我们,在截断时截断时的数据要包含整周期,并且后面不宜补零以避免频谱泄露(这一点见胡广书《数字信号处理导论》,清华大学出版社),那么,我们要选择至少980个点,才能保含到一个整周期,另外,FFT的经验告诉我们作分析时最好选择2的整数次幂,我们选择靠的最近的1024点。分析结束。
[CODE]
Fs = 80;
n = 0:1/Fs:1023*1/Fs;
x = sin(2*pi*10*n)+sin(2*pi*9.8*n);
N = length(n);
figure(1);
X = fftshift(fft(x));
plot((-N/2:N/2-1)*Fs/N,abs(X)*2/N);
grid on;
axis([0 15 0 1]);
这是按照我们的分析进行的编程和图形
可以看出这两个谱峰很好的被分辨开来,9.8Hz不在谱线上,所以幅值不为1,以下是一些对比:
[CODE]
Fs = 80;
n = 0:1/Fs:1023*1/Fs;
x = sin(2*pi*10*n)+sin(2*pi*9.8*n);
N = length(n);
X = fftshift(fft(x));
figure(1);
subplot(211)
plot((-N/2:N/2-1)*Fs/N,abs(X)*2/N);
grid on;
axis([0 15 0 1]);
title('窗长1024,包含整周期');
n = 0:1/Fs:979*1/Fs;
x = sin(2*pi*10*n)+sin(2*pi*9.8*n);
N = length(n);
X = fftshift(fft(x));
subplot(212)
plot((-N/2:N/2-1)*Fs/N,abs(X)*2/N);
grid on;
axis([0 15 0 1]);
title('窗长980,包含整周期');
n = 0:1/Fs:399*1/Fs;
x = sin(2*pi*10*n)+sin(2*pi*9.8*n);
N = length(n);
X = fftshift(fft(x));
figure(2);
subplot(211)
plot((-N/2:N/2-1)*Fs/N,abs(X)*2/N);
grid on;
axis([0 15 0 1]);
title('窗长400,不包含整周期');
Fs = 20;
n = 0:1/Fs:1024*1/Fs;
x = sin(2*pi*10*n)+sin(2*pi*9.8*n);
N = length(n);
X = fftshift(fft(x));
subplot(212)
plot((-N/2:N/2-1)*Fs/N,abs(X)*2/N);
grid on;
axis([0 15 0 1]);
title('窗长1024,采样率过小');